Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Puvaneswary S, Raghavendran HB, Talebian S, Murali MR, A Mahmod S, Singh S, et al.
    Sci Rep, 2016;6:24202.
    PMID: 27068453 DOI: 10.1038/srep24202
    In our previous study, we reported the fabrication and characterization of a novel tricalcium phosphate-fucoidan-chitosan (TCP-Fu-Ch) biocomposite scaffold. However, the previous report did not show whether the biocomposite scaffold can exhibit osteogenic differentiation of human bone marrow stromal cells in osteogenic media and normal media supplemented with platelet-derived growth factor (PDGF-BB). On day 15, the release of osteocalcin, was significant in the TCP-Fu-Ch scaffold, when compared with that in the TCP-Ch scaffold, and the level of release was approximately 8 and 6 ng/ml in osteogenic and normal media supplemented with PDGF-BB, respectively. Scanning electron microscopy of the TCP-Fu-Ch scaffold demonstrated mineralization and apatite layer formation on day 14, while the addition of PDGF-BB also improved the osteogenic differentiation of the scaffold. An array of gene expression analysis demonstrated that TCP-Fu-Ch scaffold cultured in osteogenic and normal media supplemented with PDGF-BB showed significant improvement in the expression of collagen 1, Runt-related transcription factor 2, osteonectin, bone gamma-carboxyglutamate protein, alkaline phosphatase, and PPA2, but a decline in the expression of integrin. Altogether, the present study demonstrated that fucoidan-incorporated TCP-Ch scaffold could be used in the differentiation of bone marrow stromal cells and can be a potential candidate for the treatment of bone-related ailments through tissue engineering technology.
    Matched MeSH terms: Osteocalcin
  2. Ramli ES, Suhaimi F, Asri SF, Ahmad F, Soelaiman IN
    J. Bone Miner. Metab., 2013 May;31(3):262-73.
    PMID: 23274351 DOI: 10.1007/s00774-012-0413-x
    Rapid onset of bone loss is a frequent complication of systemic glucocorticoid therapy which may lead to fragility fractures. Glucocorticoid action in bone depends upon the activity of 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). Regulations of 11β-HSD1 activity may protect the bone against bone loss due to excess glucocorticoids. Glycyrrhizic acid (GCA) is a potent inhibitor of 11β-HSD. Treatment with GCA led to significant reduction in bone resorption markers. In this study we determined the effect of GCA on 11β-HSD1 activity in bones of glucocorticoid-induced osteoporotic rats. Thirty-six male Sprague-Dawley rats (aged 3 months and weighing 250-300 g) were divided randomly into groups of ten. (1) G1, sham operated group; (2) G2, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral vehicle normal saline vehicle; and (3) G3, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral GCA 120 mg/kg/day The results showed that GCA reduced plasma corticosterone concentration. GCA also reduced serum concentration of the bone resorption marker, pyridinoline and induced 11β-HSD1 dehydrogenase activity in the bone. GCA improved bone structure, which contributed to stronger bone. Therefore, GCA has the potential to be used as an agent to protect the bone against glucocorticoid induced osteoporosis.
    Matched MeSH terms: Osteocalcin/blood
  3. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY
    Cytotherapy, 2007;9(2):170-83.
    PMID: 17453969
    The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons.
    Matched MeSH terms: Osteocalcin/analysis; Osteocalcin/genetics
  4. Foo LH, Suzina AH, Azlina A, Kannan TP
    J Biomed Mater Res A, 2008 Oct;87(1):215-21.
    PMID: 18085658
    Coral matrix of Porites sp. has the suitable properties for bone cell growth. This study was aimed to study the gene expression levels of osteoblast specific genetic markers; RUNX2, osteopontin, alkaline phosphatase and osteocalcin from osteoblasts seeded in coral scaffold, which are important in determining the feasibility of osteoblasts. Human osteoblasts were inoculated onto the processed coral in Dulbecco's Minimum Essential Medium. The cells were trypsinized on day 1, 7, 14, 18, and 21 and added with RNALater for preservation of RNA in cells. The RNA was extracted using commercial RNA extraction kit and the respective genes were amplified using RT-PCR kit and analyzed qualitatively on 1.5% agarose gel. The expressions were evaluated with the Integrated Density Value based on the intensity of band for different periods of cell harvest. Increased expressions of the RUNX2, osteopontin, alkaline phosphatase and osteocalcin genes in the present study proved that coral is a favorable carrier for osteogenetically competent cells to attach and remain viable.
    Matched MeSH terms: Osteocalcin/genetics
  5. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ayurveda Integr Med, 2017 11 13;9(4):272-280.
    PMID: 29146110 DOI: 10.1016/j.jaim.2017.04.005
    BACKGROUND: Among the numerous well-documented medicinal herbs, Eurycoma longifolia (EL) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Though numerous animal studies have explored the bone-forming capacity of EL, the exact mechanism was yet to be explored.

    OBJECTIVE(S): The present study was aimed to investigate the mechanism of bone-forming capacity of EL using MC3T3-E1 as an in vitro osteoblastic model.

    MATERIALS AND METHODS: The cell differentiation capacity of EL was investigated by evaluating cell growth, alkaline phosphatase (ALP) activity, collagen deposition and mineralization. Taken together, time-mannered expression of bone-related mediators which include bone morphogenic protein-2 (BMP-2), ALP, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), type I collagen, osteopontin (OPN), transforming growth factor-β1 (TGF-β1) and androgen receptor (AR) were measured to comprehend bone-forming mechanism of EL.

    RESULTS: Results demonstrated a superior cell differentiation efficacy of EL (particularly at a dose of 25 μg/mL) that was evidenced by dramatically increased cell growth, higher ALP activity, collagen deposition and mineralization compared to the testosterone. Results analysis of the bone-related protein biomarkers indicated that the expression of these mediators was well-regulated in EL-treated cell cultures compared to the control groups. These findings revealed potential molecular mechanism of EL for the prevention and treatment of male osteoporosis.

    CONCLUSION: The resulting data suggested that EL exhibited superior efficacy in stimulating bone formation via up-regulating the expression of various mitogenic proteins and thus can be considered as a potential natural alternative therapy for the treatment of osteoporosis.

    Matched MeSH terms: Osteocalcin
  6. Fazliah, S.N., Jaafar, S., Shamsuddin, S., Zainudin, Z., Hilmi, A.B., Razila, A.R., et al.
    ASM Science Journal, 2010;4(1):1-14.
    MyJurnal
    Stem cells from human extracted deciduous teeth (SHED) have the ability to multiply much faster and double their population in culture at a greater rate, indicating that it may be in a more immature state than other type of adult stem cells. Mesenchymal stem cells (MSC) from human primary molars were isolated and cultured in media supplemented with 20% fetal bovine serum. The MSCs were confirmed using CD 105 and CD 166 and the identification of the osteoblast cells were done using reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Differentiated osteoblast cells (DOC) were characterized by alkaline phosphotase and von Kossa staining followed by immunocytochemistry staining using osteocalcin and osteonectin antibodies. Further validation of SHED was done by RT-PCR to detect the presence of insulin-like growth factor 2 (IGF-2) and discoidin domain tyrosine kinase-2 (DDTK-2) transcripts, while the presence of Runx-2 mRNA was used to characterize DOC. The results showed that SHED was found positive for CD 105 and CD 166 and could differentiate into osteoblast, bone forming cells. The findings revealed the presence of distinct MSC population which had the capability to generate living human cells that could be a possible source for tissue engineering in the future.
    Matched MeSH terms: Osteocalcin
  7. Al Qabbani A, Rani KGA, AlKawas S, Sheikh Abdul Hamid S, Yap Abdullah A, Samsudin AR, et al.
    PLoS One, 2023;18(12):e0294291.
    PMID: 38127838 DOI: 10.1371/journal.pone.0294291
    The aim of this study was to compare the ability of demineralized (DMB) and decellularized (DCC) bovine bone granules to support bone regeneration in rat calvaria critical-size defects. DMB and DCC were prepared using a previously published method. The granule size used ranged between 500 and 750 μm. A total of forty-eight Sprague-Dawley rats were divided into two groups (n = 24). A pair of 5 mm diameter defects were created on the calvaria of the rats in the right and left parietal bone in both groups. Group A animals received DMB granules and Group B received DCC granules in the right parietal defect side while the left parietal untreated defect acted as sham surgery for both groups. Four animals per group were euthanized in a CO2 chamber at day 7, 14 and 21 post-surgery and the calvaria implantation site biopsy harvested was subjected to osteogenic gene expression analysis. Another four animals per group were euthanized at days 15, 30 and 60 post surgery and the calvaria implantation site biopsy harvested was subjected to histological, immunohistochemistry, RAMAN spectroscopy and Micro-CT analysis at the mentioned time points. Statistical analysis was conducted using t-tests and ANOVA. Histomorphometry showed significantly higher new bone formation in the DCC sites (p<0.05) compared to DMB. Both DMB and DCC implantation sites showed distinct staining for osteocalcin and osteopontin proteins compared to their respective sham sites. By day 21 after implantation, DCC sites demonstrated significantly elevated mRNA levels of osteonectin (p<0.001), osteopontin (p<0.001), osteocalcin (p<0.0001), ALP (p<0.01), and BMP-2 (p<0.001) compared to DMB. However, VEGF expression showed no significant differences at this time point between the two groups. Micro-CT analysis also showed enhanced defect closure and higher bone density in DCC implanted sites while RAMAN spectra demonstrated increased abundance of collagen and bone minerals, especially, PO43- ions than DMB. In conclusion, both DMB and DCC granules demonstrated favorable osteogenic potential in critical-sized defects, with DCC exhibited superior osteoconductive, osteoinductive and osteogenesis properties.
    Matched MeSH terms: Osteocalcin
  8. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Ibrahim OE, Daher AM
    Curr Pharm Des, 2016;22(16):2403-10.
    PMID: 27139374
    OBJECTIVES: -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat.

    MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers.

    RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3).

    CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.

    Matched MeSH terms: Osteocalcin/metabolism*
  9. Ang SL, Shaharuddin B, Chuah JA, Sudesh K
    Int J Biol Macromol, 2020 Feb 15;145:173-188.
    PMID: 31866541 DOI: 10.1016/j.ijbiomac.2019.12.149
    Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by microorganisms, under unbalanced growth conditions, as a carbon storage compound. PHAs are composed of various monomers such as 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). Silk fibroin (SF) derived from Bombyx mori cocoons, is a widely studied protein polymer commonly used for biomaterial applications. In this study, non-woven electrospun films comprising a copolymer of 3HB and 3HHx [P(3HB-co-3HHx)], SF and their blends were prepared by electrospinning technique. The growth and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were studied using different types of fabricated electrospun films. The differentiation study revealed that electrospun P(3HB-co-3HHx)/SF film supports the differentiation of hUC-MSCs into the osteogenic lineage, confirmed by histological analysis using Alizarin Red staining, energy dispersive X-ray (EDX) and quantitative real-time PCR analysis (qPCR). Electrospun P(3HB-co-3HHx)/SF film up-regulated the expression of osteogenic marker genes, alkaline phosphatase (ALP) and osteocalcin (OCN), by 1.6-fold and 2.8-fold respectively, after 21 days of osteogenic induction. In conclusion, proliferation and osteogenic differentiation of hUC-MSCs were enhanced through the blending of P(3HB-co-3HHx) and SF. The results from this study suggest that electrospun P(3HB-co-3HHx)/SF film is a promising biomaterial for bone tissue engineering.
    Matched MeSH terms: Osteocalcin
  10. Norazlina M, Lee PL, Lukman HI, Nazrun AS, Ima-Nirwana S
    Singapore Med J, 2007 Mar;48(3):195-9.
    PMID: 17342286
    Nicotine has been shown to exert negative effects on bone. This study determined whether vitamin E supplementation is able to repair the nicotine-induced adverse effects in bone.
    Matched MeSH terms: Osteocalcin/analysis
  11. Lai PS, Chua SS, Chew YY, Chan SP
    J Clin Pharm Ther, 2011 Oct;36(5):557-67.
    PMID: 21916908 DOI: 10.1111/j.1365-2710.2010.01210.x
    Studies have shown that comprehensive interventions by pharmacists can improve adherence and persistence to osteoporosis therapy, but the association between adherence and bone turnover markers (BTMs) has never been studied. Therefore, the aim of this study was to evaluate the effects of pharmaceutical care on medication adherence (and its effects on BTMs), as well as persistence of postmenopausal osteoporotic women to prescribed bisphosphonates.
    Matched MeSH terms: Osteocalcin/blood
  12. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: Osteocalcin/blood
  13. Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R
    J Biomed Opt, 2013 Dec;18(12):128001.
    PMID: 24337495 DOI: 10.1117/1.JBO.18.12.128001
    Bone regeneration is essential in medical treatment, such as in surgical bone healing and orthodontics. The aim of this study is to examine the effect of different powers of 940 nm diode low-level laser treatment (LLLT) on osteoblast cells during their proliferation and differentiation stages. A human fetal osteoblast cell line was cultured and treated with LLLT. The cells were divided into experimental groups according to the power delivered and periods of exposure per day for each laser power. The (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to determine cell proliferation. Both alkaline phosphatase and osteocalcin activity assays were assessed for cell differentiation. All treatment groups showed a significant increase in cell proliferation and differentiation compared to the control group. Regarding the exposure time, the subgroups treated with the LLLT for 6 min showed higher proliferation and differentiation rates for the powers delivered, the 300-mW LLLT group significantly increased the amount of cell proliferation. By contrast, the 100 and 200 mW groups showed significantly greater amounts of cell differentiation. These results suggest that the use of LLLT may play an important role in stimulating osteoblast cells for improved bone formation.
    Matched MeSH terms: Osteocalcin/analysis; Osteocalcin/metabolism
  14. Hou ZP, Tang SY, Ji HR, He PY, Li YH, Dong XL, et al.
    Chin J Integr Med, 2021 Apr;27(4):280-285.
    PMID: 31872369 DOI: 10.1007/s11655-019-3209-1
    OBJECTIVE: To investigate the mechanistic basis for the attenuation of bone degeneration by edible bird's nest (EBN) in ovariectomized rats.

    METHODS: Forty-two female Sprage-Dawley rats were randomized into 7 groups (6 in each group). The ovariectomized (OVX) and OVX + 6%, 3%, and 1.5% EBN and OVX +estrogen groups were given standard rat chow alone, standard rat chow +6%, 3%, and 1.5% EBN, or standard rat chow +estrogen therapy (0.2mg/kg per day), respectively. The sham-operation group was surgically opened without removing the ovaries. The control group did not have any surgical intervention. After 12 weeks of intervention, blood samples were taken for serum estrogen, osteocalcin, and osteoprotegerin, as well as the measurement of magnesium, calcium abd zinc concentrations. While femurs were removed from the surrounding muscles to measure bone mass density using the X-ray edge detection technique, then collected for histology and estrogen receptor (ER) immunohistochemistry.

    RESULTS: Ovariectomy altered serum estrogen levels resulting in increased food intake and weight gain, while estrogen and EBN supplementation attenuated these changes. Ovariectomy also reduced bone ER expression and density, and the production of osteopcalcin and osteorotegerin, which are important pro-osteoplastic hormones that promote bone mineraliztion and density. Conversely, estrogen and EBN increased serum estrogen levels leading to increased bone ER expression, pro-osteoplastic hormone production and bone density (all P<0.05).

    CONCLUSION: EBN could be used as a safe alternative to hormone replacement therapys for managing menopausal complications like bone degeneration.

    Matched MeSH terms: Osteocalcin
  15. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Osteocalcin
  16. Malik MMA, Othman F, Hussan F, Shuid AN, Saad QM
    Vet World, 2019 Dec;12(12):2052-2060.
    PMID: 32095059 DOI: 10.14202/vetworld.2019.2052-2060
    Background and Aim: Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are rich in antioxidants and may protect the bone against bone loss induced by ovariectomy and high-fat diet. The study aimed to determine the protective effects of combined therapy of VCO and TRF on osteoporosis in ovariectomized (OVX) rat fed with high-fat diet.

    Materials and Methods: Thirty-six female Sprague-Dawley rats were divided into six groups: Sham-operated (SHAM), OVX control, OVX and given Premarin at 64.5 µg/kg (OVX+E2), OVX and given VCO at 4.29 ml/kg (OVX+V), OVX and given TRF at 30 mg/kg (OVX+T), and OVX and given a combination of VCO at 4.29 ml/kg and TRF at 30 mg/kg (OVX+VT). Following 24 weeks of treatments, blood and femora samples were taken for analyses.

    Results: There were no significant differences in serum osteocalcin levels between the groups (p>0.05), while serum C-terminal telopeptide of Type I collagen levels of the OVX+VT group were significantly lower than the other groups (p<0.05). The dynamic bone histomorphometry analysis of the femur showed that the double-labeled surface/bone surface (dLS/BS), mineral apposition rate, and bone formation rate/BS of the OVX+E2, OVX+T, and OVX+VT groups were significantly higher than the rest of the groups (p<0.05).

    Conclusion: A combination of VCO and TRF has the potential as a therapeutic agent to restore bone loss induced by ovariectomy and high-fat diet.

    Matched MeSH terms: Osteocalcin
  17. Saadiah Abdul Razak H, Shuid AN, Naina Mohamed I
    PMID: 22924057 DOI: 10.1155/2012/872406
    Androgen-deficient osteoporosis in men is treated with testosterone therapy, which is associated with side effects. Eurycoma longifolia (EL) is known to possess androgenic properties and has been reported to protect bone from androgen-deficient osteoporosis in experimental animal models. The present study aimed to determine the effectiveness of combination therapy of EL and testosterone (T) in treating androgen-deficient osteoporosis. Forty male Sprague-Dawley rats were divided into: sham-operated (SHAM), orchidectomized-control (ORX), orchidectomized with testosterone (ORX + T), orchidectomized with EL (ORX + EL), and orchidectomized with combined T and EL therapy (ORX + T + EL). EL was administered via oral gavages daily at the dose of 15 mg/kg. T was injected intramuscularly at 8 mg/kg and 4 mg/kg for the ORX + T and ORX + T + EL groups, respectively. Following 6 weeks of treatment, the osteocalcin levels of ORX + T and ORX + T + EL groups were significantly lower than the SHAM group (P < 0.05). The posttreatment CTX levels of ORX + T and ORX + T + EL groups were significantly lower than their pretreatment levels (P < 0.05). Biomechanically, the strain parameter of the ORX + T + EL group was significantly higher than the ORX group (P < 0.05). Thus, the combination therapy of EL and low-dose T has potential for treatment of androgen-deficient osteoporosis. The lower T dose is beneficial in reducing the sideeffects of testosterone therapy.
    Matched MeSH terms: Osteocalcin
  18. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Osteocalcin/genetics; Osteocalcin/metabolism
  19. Chee, W.S.S., Chong, P.N., Chuah, K.A., Karupaiah, T ., Norlaila Mustafa, Seri Suniza, S., et al.
    Malays J Nutr, 2010;16(2):233-242.
    MyJurnal
    Bone health status was investigated in 178 free-living Chinese post-menopausal women in Kuala Lumpur. Body mass index (BMI), body composition (using whole body DXA), calcium intake and serum 25-OH vitamin D status were measured along with biochemical markers of bone turnover, that is, pro-collagen Type 1 N-terminal peptide (P1NP), osteocalcin (OC) and C-telopeptide ß cross
    link of Type 1 collagen (CTX- β). Bone mineral density (BMD) was measured using DXA (Hologic, USA) at the lumbar spine, femoral neck and total hip. Results showed that osteopenia was present in 50% of the subjects at the spine and 57.9% at the femoral neck. Osteoporosis was diagnosed in 10% of the subjects at both the femoral neck and spine. A total of 29.3% of the subjects had high
    levels of CTX- ß. Mean serum level of 25-OH vitamin D was 60.4+15.6 nmol/L and 50.6% of the subjects had hypovitaminosis D (defined as
    Matched MeSH terms: Osteocalcin
  20. Das S, Sakthiswary R
    Curr Drug Targets, 2013 Dec;14(14):1667-74.
    PMID: 24354585
    Preventing osteoporotic fractures in millions of individuals may significantly reduce the associated morbidity and health-care expenditures incurred. As such, the search for newer anti-osteoporotic agents has been ongoing for years. Genetic studies have proven that the secreted protein sclerostin is one of the main culprits, which negatively regulates the bone formation. Recently, sclerostin-neutralizing monoclonal antibodies (Scl-Ab) in rodent studies have shown positive effects on bone homeostasis. An extensive search of the literature was performed in the BIOSIS, Cinahl, EMBASE, Pub- Med, Web of Science and Cochrane Library databases to evaluate the published murine studies on the effects of Scl-Ab on the bone metabolism and histomorphometric parameters. Our systematic review depicts a significant association between Scl-Ab administration and improvement in bone formation, bone density, bone volume and trabecular thickness.
    Matched MeSH terms: Osteocalcin/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links