CONCLUSION: A thermo-sensitive gel containing Cur/DsiRNA CS nanoparticles was successfully developed and has a great potential to be further developed.
OBJECTIVE: The present study was aimed to circumvent the pharmaceutical issues related to DsiRNA delivery to colon for the treatment of colorectal cancer.
METHOD: In this study, we have prepared water-soluble chitosan (WSC)-DsiRNA complex nanoparticles (NPs) by a simple complexation method and subsequently coated with pectin to protect DsiRNA from gastric milieu.
RESULTS: The mean particle size and zeta potential of the prepared WSC-DsiRNA complexes were varied from 145 ± 4 nm to 867 ± 81 nm and +38 ± 4 to -6.2 ± 2.7 mV respectively, when the concentrations of WSC (0.1%, 0.2% and 0.3% w/v) and pectin (0.1%, 0.2% and 0.25% w/v) were varied. The electron microscopic analysis revealed that morphology of WSC-DsiRNA complexes was varied from smooth spherical to irregular spherical. Cytotoxicity analysis demonstrated that viability of colorectal adenocarcinoma cell was decreased when the dose of WSC-DsiRNA was increased over the incubation from 24 to 48 h. A significantly low cumulative release of DsiRNA in simulated gastric (<15%) and intestinal fluids (<30%) and a marked increase in its release (>90%) in simulated colonic fluid (SCF) evidenced the feasibility and suitability of WSC-DsiRNA complexes for the colonic delivery.
CONCLUSION: These findings clearly indicated promising potential of WSC-DsiRNA complexes as a carrier to delivery DsiRNA to colon for the treatment of colorectal cancer.
METHODS AND RESULTS: We investigated steady-state messenger RNA levels of 84 histone-modifying enzymes and related regulators in colony-stimulating factor-1 differentiated primary human macrophages using quantitative polymerase chain reaction. IFN-γ or IL-4 treatment for 6-48 h changed 11 mRNAs significantly. IFN-γ increased CIITA, KDM6B, and NCOA1, and IL-4 also increased KDM6B by 6 h. However, either cytokine decreased AURKB, ESCO2, SETD6, SUV39H1, and WHSC1, whereas IFN-γ alone decreased KAT2A, PRMT7, and SMYD3 mRNAs only after 18 h, which coincided with decreased cell proliferation. Rendering macrophages quiescent by growth factor starvation or adenovirus-mediated overexpression of p27(kip1) inhibited expression of AURKB, ESCO2, SUV39H1, and WHSC1, and mRNA levels were restored by overexpressing the S-phase transcription factor E2F1, implying their expression, at least partly, depended on proliferation. However, CIITA, KDM6B, NCOA1, KAT2A, PRMT7, SETD6, and SMYD3 were regulated independently of effects on proliferation. Silencing KDM6B, the only transcriptional activator upregulated by both IFN-γ and IL-4, pharmacologically or with short hairpin RNA, blunted a subset of responses to each cytokine.
CONCLUSION: These findings demonstrate that IFN-γ or IL-4 can regulate the expression of histone acetyl transferases and histone methyl transferases independently of effects on proliferation and that upregulation of the histone demethylase, KDM6B, assists phenotypic polarization by both cytokines.