Displaying publications 21 - 40 of 135 in total

Abstract:
Sort:
  1. Lim SL, Wu TY
    J Agric Food Chem, 2016 Mar 2;64(8):1761-9.
    PMID: 26844586 DOI: 10.1021/acs.jafc.6b00531
    The valorization process involves transforming low-value materials such as wastes into high-value-added products. The current study aims to determine the potential of using a valorization process such as vermicomposting technology to convert palm oil mill byproduct, namely, decanter cake (DC), into organic fertilizer or vermicompost. The maturity of the vermicompost was characterized through various chemical and instrumental characterization to ensure the end product was safe and beneficial for agricultural application. The vermicomposting of DC showed significantly higher nutrient recovery and decreases in C:N ratio in comparison with the controls, particularly in the treatment with 2 parts DC and 1 part rice straw (w/w) (2DC:1RS). 2DC:1RS vermicompost had a final C:N ratio of 9.03 ± 0.12 and reasonably high levels of calcium (1.13 ± 0.05 g/kg), potassium (25.47 ± 0.32 g/kg), magnesium (4.87 ± 0.19 g/kg), sodium (7.40 ± 0.03 g/kg), and phosphorus (3.62 ± 0.27 g/kg). In addition, instrumental characterization also revealed a higher degree of maturity in the vermicompost. Ratios of 2921:1633 and DTG2:DTG3 also showed significant linear correlations with the C:N ratio, implying that those ratios could be used to characterize the progression of vermicompost maturity during the valorization process of DC.
    Matched MeSH terms: Waste Products/analysis*
  2. Filho WL, Havea PH, Balogun AL, Boenecke J, Maharaj AA, Ha'apio M, et al.
    Sci Total Environ, 2019 Jun 20;670:181-187.
    PMID: 31018438 DOI: 10.1016/j.scitotenv.2019.03.181
    Plastic debris is a worldwide problem. This is particularly acute in the Pacific region, where its scale is a reason for serious concerns. There is an obvious need for studies to assess the extent to which plastic debris affects the Pacific. Therefore, this research aims to address this need by undertaking a systematic assessment of the ecological and health impacts of plastic debris on Pacific islands. Using pertinent historical qualitative and quantitative data of the distribution of plastic debris in the region, this study identified pollution and contamination trends and risks to ecosystems, and suggests some measures which may be deployed to address the identified problems. The study illustrates the fact that Pacific Island States are being disproportionately affected by plastic, and reiterates that further studies and integrated strategies are needed, involving public education and empowerment, governmental action, as well as ecologically sustainable industry leadership. It is also clear that more research is needed in respect of developing alternatives to conventional plastic, by the production of bio-plastic, i.e. plastic which is produced from natural (e.g. non-fossil fuel-based sources) materials, and which can be fully biodegradable.
    Matched MeSH terms: Waste Products/adverse effects*
  3. Tao Y, Han Y, Liu W, Peng L, Wang Y, Kadam S, et al.
    Ultrason Sonochem, 2019 Apr;52:193-204.
    PMID: 30514598 DOI: 10.1016/j.ultsonch.2018.11.018
    In this work, sonication (20-kHz) was conducted to assist the biosorption of phenolics from blueberry pomace extracts by brewery waste yeast biomass. The adsorption capacity of yeast increased markedly under ultrasonic fields. After sonication at 394.2 W/L and 40 °C for 120 min, the adsorption capacity was increased by 62.7% compared with that under reciprocating shaking. An artificial neural network was used to model and visualize the effects of different parameters on yeast biosorption capacity. Both biosorption time and acoustic energy density had positive influences on yeast biosorption capacity, whereas no clear influence of temperature on biosorption process was observed. Regarding the mechanism of ultrasound-enhanced biosorption process, the amino and carboxyl groups in yeast were considered to be associated with the yeast biosorption property. Meanwhile, ultrasound promoted the decline of the structure order of yeast cells induced by phenolic uptake. The interactions between yeast cells and phenolics were also affected by the structures of phenolics. Moreover, the mass transfer process was simulated by a surface diffusional model considering the ultrasound-induced yeast cell disruption. The modeling results showed that the external mass transfer coefficient in liquid phase and the surface diffusion coefficient under sonication at 394.2 W/L and 40 °C were 128.5% and 74.3% higher than that under reciprocating shaking, respectively.
    Matched MeSH terms: Waste Products*
  4. Khan F, Ahmed W, Najmi A, Younus M
    Environ Sci Pollut Res Int, 2019 Nov;26(32):33054-33066.
    PMID: 31512138 DOI: 10.1007/s11356-019-06411-4
    The rapid increase in urbanization has given rise to the need of proper waste management. Within municipal waste, the plastic waste is a growing concern which is causing severe harm to our ecosystem. If ignored, this problem will have harmful effects on both human and wildlife. Therefore, this study aims to find out the factors that influence the recycling behavior patterns of consumers regarding plastic waste. The variables from the theory of planned behavior were adopted to study the behavior of consumers toward recycling plastic waste. The data was collected from 243 residents of Karachi-metropolitan city of Pakistan. The partial least square-structural equation modelling was applied to analyze the data. The findings of the current study reveal that different consumers' attributes and attitudes trigger different types of recycling behavior when it comes to waste disposal. Pressure from family and friends and perceived behavioral control trigger the behavior of reselling the waste plastic products while consumer's awareness of consequences and personal attitude toward proper waste disposal leads to reuse or donating that product to someone who can use that plastic product. The understanding of these consumer attributes may help to shape the behavioral outcomes in order to manage waste disposal. This study will be beneficial for business managers looking to improve reverse logistics as well as government/municipal policy makers and academics/researchers who are interested in a solution-oriented study.
    Matched MeSH terms: Waste Products*
  5. Mohajerani A, Hui SQ, Mirzababaei M, Arulrajah A, Horpibulsuk S, Abdul Kadir A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394815 DOI: 10.3390/ma12162513
    Fibres have been used in construction materials for a very long time. Through previous research and investigations, the use of natural and synthetic fibres have shown promising results, as their presence has demonstrated significant benefits in terms of the overall physical and mechanical properties of the composite material. When comparing fibre reinforcement to traditional reinforcement, the ratio of fibre required is significantly less, making fibre reinforcement both energy and economically efficient. More recently, waste fibres have been studied for their potential as reinforcement in construction materials. The build-up of waste materials all around the world is a known issue, as landfill space is limited, and the incineration process requires considerable energy and produces unwanted emissions. The utilisation of waste fibres in construction materials can alleviate these issues and promote environmentally friendly and sustainable solutions that work in the industry. This study reviews the types, properties, and applications of different fibres used in a wide range of materials in the construction industry, including concrete, asphalt concrete, soil, earth materials, blocks and bricks, composites, and other applications.
    Matched MeSH terms: Waste Products
  6. Kaliyavaradhan SK, Ling TC, Guo MZ, Mo KH
    J Environ Manage, 2019 Jul 01;241:383-396.
    PMID: 31028969 DOI: 10.1016/j.jenvman.2019.03.017
    The exponential growth of waste generation is posing serious environmental issues and thus requires urgent management and recycling action to achieve green sustainable development. Controlled low-strength material (CLSM) is a highly flowable cementitious backfill material with self-consolidating properties. The CLSM efficiency during construction and final performance at the site depends on its plastic properties. Plastic properties are responsible for workability, pumpability, stability, and lateral pressure on adjacent soils. This paper presents a critical review to date on the use of waste materials and/or by-products and their impacts on the plastic properties of the CLSM. Extensive previous studies demonstrated that the basic properties and content of waste materials as well as the amount of water in the mix design, play a dominant role in determining the plastic properties of CLSM. The discussed plastic properties of CLSM include flowability, bleeding, segregation, and hardening time, which are found to be inter-related. Proper mix design adjustment to accommodate the use of waste materials is possible to produce sustainable CLSM with acceptable plastic properties. Additionally, the discussion and analysis presented in this paper could provide a basis for future research advances and the development of sustainable CLSM prepared with waste materials.
    Matched MeSH terms: Waste Products
  7. Nik Azmi Nik Mahmood, Mohd Nazlee Faisal Md Ghazali, Kamarul’Asri Ibrahim, Nur Muhammad ElQarni Md Norodin
    MyJurnal
    The aim of this project is to produce electricity from citronella biomass using isolated microbes from wastewater as biocatalyst in a dual chamber microbial fuel cell (MFC). MFC is one such system that not only reduced biomass, which contains mostly waste products but can also liberate electricity from them. MFC system is well-established and using lignocellulosic biomass as fuel is one step to future energy generation. Trials of MFC experiments have been conducted but using citronella bagasse (CB) as fuel source. Furthermore, pre-treatment of the biomass was done using NaOH pre-treament and effluent treatment wastewater from a palm edible oil company as a source for microorganism. The end results indicate that bioelectricity production from CB is possible though very low yield in the present MFC.
    Matched MeSH terms: Waste Products
  8. Kanadasan J, Abdul Razak H
    Materials (Basel), 2015 Dec 16;8(12):8817-8838.
    PMID: 28793748 DOI: 10.3390/ma8125494
    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.
    Matched MeSH terms: Waste Products
  9. Bheel N, Aluko OG, Khoso AR
    Environ Sci Pollut Res Int, 2022 Apr;29(18):27399-27410.
    PMID: 34982384 DOI: 10.1007/s11356-021-18455-6
    The quest for eco-sustainable binders like agro-wastes in concrete to reduce the carbon footprint caused by cement production has been ongoing among researchers recently. The application of agro-waste-based cementitious materials in binary concrete has been said to improve concrete performance lately. Coconut and groundnut shells are available in abundant quantities and disposed of as waste in many world regions. Therefore, the use of coconut shell ash (CSA) and groundnut shell ash (GSA) in a ternary blend provides synergistic benefits with Portland cement (PC) and may be sustainably utilized in concrete as ternary cementitious material (TCM). Therefore, this study presents concrete performance with CSA and GSA in a grade 30 ternary concrete. Two hundred ten numbers of standard concrete samples were cast for checking the fresh and mechanical properties of concrete at curing ages of 7, 28, and 90 days. After 28-day curing, the experimental results show an increment in compressive, tensile, and flexural strength by 11.62%, 8.39%, and 9.46% at 10% TCM cement replacement, respectively. The concrete density and permeability coefficient reduce as TCM's content increases. The modulus of elasticity after 90 days improved with the addition of TCM. The concrete's sustainability assessment indicated that the emitted carbon for concrete decreased by around 16% using 20% TCM in concrete. However, the workability of fresh concrete declines as TCM content increases.
    Matched MeSH terms: Waste Products
  10. Afroz R, Masud MM
    Waste Manag, 2011 Apr;31(4):800-8.
    PMID: 21169007 DOI: 10.1016/j.wasman.2010.10.028
    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.
    Matched MeSH terms: Waste Products/analysis*; Waste Products/classification
  11. Manaf LA, Samah MA, Zukki NI
    Waste Manag, 2009 Nov;29(11):2902-6.
    PMID: 19540745 DOI: 10.1016/j.wasman.2008.07.015
    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.
    Matched MeSH terms: Waste Products/analysis*; Waste Products/statistics & numerical data
  12. Ryan PG
    Mar Pollut Bull, 2013 Apr 15;69(1-2):128-36.
    PMID: 23415747 DOI: 10.1016/j.marpolbul.2013.01.016
    A size and distance-based technique was used to assess the distribution, abundance and composition of floating marine debris in the northeast Indian Ocean. Densities of floating litter (>1 cm) were greater and more variable in the Straits of Malacca (578±219 items km(-2)) than in oceanic waters of the Bay of Bengal (8.8±1.4 items km(-2)). The density of debris in the Straits was correlated with terrestrial vegetation, and peaked close to urban centres, indicating the predominance of land-based sources. In the Bay of Bengal, debris density increased north of 17°N mainly due to small fragments probably carried in run-off from the Ganges Delta. The low densities in the Bay of Bengal relative to model predictions may result from biofouling-induced sinking and wind-driven export of debris items. Standardised data collection protocols are needed for counts of floating debris, particularly as regards the size classes used, to facilitate comparisons among studies.
    Matched MeSH terms: Waste Products/analysis*; Waste Products/statistics & numerical data
  13. Ong SY, Zainab-L I, Pyary S, Sudesh K
    Appl Microbiol Biotechnol, 2018 Mar;102(5):2117-2127.
    PMID: 29404644 DOI: 10.1007/s00253-018-8788-9
    Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.
    Matched MeSH terms: Waste Products/analysis*; Waste Products/economics
  14. Auta HS, Emenike CU, Fauziah SH
    Environ Int, 2017 May;102:165-176.
    PMID: 28284818 DOI: 10.1016/j.envint.2017.02.013
    The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics.

    CAPSULE: The concentration, distribution sources and fate of microplastics in the global marine environment were discussed, so also was the impact of microplastics on a wide range of marine biota.

    Matched MeSH terms: Waste Products/adverse effects; Waste Products/analysis*
  15. Lam YF, Lee LY, Chua SJ, Lim SS, Gan S
    Ecotoxicol Environ Saf, 2016 May;127:61-70.
    PMID: 26802563 DOI: 10.1016/j.ecoenv.2016.01.003
    Lansium domesticum peel (LDP), a waste material generated from the fruit consumption, was evaluated as a biosorbent for nickel removal from aqueous media. The effects of dosage, contact time, initial pH, initial concentration and temperature on the biosorption process were investigated in batch experiments. Equilibrium data were fitted by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models using nonlinear regression method with the best-fit model evaluated based on coefficient of determination (R(2)) and Chi-square (χ(2)). The best-fit isotherm was found to be the Langmuir model exhibiting R(2) very close to unity (0.997-0.999), smallest χ(2) (0.0138-0.0562) and largest biosorption capacity (10.1mg/g) at 30°C. Kinetic studies showed that the initial nickel removal was rapid with the equilibrium state established within 30min. Pseudo-second-order model was the best-fit kinetic model indicating the chemisorption nature of the biosorption process. Further data analysis by the intraparticle diffusion model revealed the involvement of several rate-controlling steps such as boundary layer and intraparticle diffusion. Thermodynamically, the process was exothermic, spontaneous and feasible. Regeneration studies indicated that LDP biosorbent could be regenerated using hydrochloric acid solution with up to 85% efficiency. The present investigation proved that LDP having no economic value can be used as an alternative eco-friendly biosorbent for remediation of nickel contaminated water.
    Matched MeSH terms: Waste Products
  16. Olalere OA, Gan CY, Abdurahman HN, Adeyi O, Ahmad MM
    Heliyon, 2020 Aug;6(8):e04770.
    PMID: 32923719 DOI: 10.1016/j.heliyon.2020.e04770
    The increase in wastes generated from jackfruit seeds has been largely under-utilized in Malaysia. Due to the high nutritional and medicinal content embedded in the cellulosic structure of jackfruit wastes, a need then arises for their physicochemical elucidations. In this study, the extraction of Artocarpus heterophyllus seed was carefully investigated using Taguchi orthogonal optimization design. Complete functional group characteristics and chemical profile of the A. heterophyllus seed extracts were obtained using different physicochemical characterization. The optimal conditions of the microwave extraction parameters were determined at 5 min of irradiation time, 450 W of power and 50 °C of temperature. Under this condition, the optimal yield of 17.34 (mg/g) % was achieved at an SNR ratio of 24.78. The mass spectrometry analysis tentatively identified a total of 90 and 148 secondary metabolites at positive and negative ESI modes, respectively. The chemical profile obtained provided a baseline reference for further investigation on the food and medicinal bioactive from Artocarpus heterophyllus seed oleoresins. The FT-infrared emission spectrum shows the presence of some specific carbohydrates and amide protein functional groups directly linked to C-O (1008 cm-1) the carbonyl (C=O) groups, respectively. Moreover, the morphological characteristics of the jackfruit raw and crude extracts conspicuously revealed large-sized globules which suggest the carbohydrates and protein contents. The result of this study indicates that the use of microwave extraction technology produced high-quality extracts with lower degradation of the thermal labile constituents. This will assist in determining the suitable conditions necessary for the total recovery of medicinal and nutritional constituents and conversion of agricultural waste products into useful products.
    Matched MeSH terms: Waste Products
  17. Jimmus, Melsie Enn, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Waste Products
  18. Jawatin, Easther Lynn Jolly, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Waste Products
  19. Davendralingam Sinniah, Thiruselvi Subramaniam, Myint Myint Soe-Hsiao
    MyJurnal
    Shock is a clinical challenge to neonatal intensivists and pediatricians alike. It occurs in critically ill babies for many reasons, but the main cause is sepsis that kills more than a million newborn globally every year. This article is designed to help young doctors and trainees have a better understanding of shock in the neonatal period and its management. The paper reviews the basic pathophysiology, risk factors, clinical investigation, management, supportive care, and complications in the common types of shock seen in neonates. Treatment is governed largely by the underlying cause, with the ultimate goal of achieving adequate tissue perfusion with delivery of oxygen and substrates to the cells, and removal of toxic metabolic waste products. Intervention needs to be anticipatory and urgent to prevent progression to uncompensated and irreversible shock respectively. Early recognition and urgent effective management are crucial to successful outcomes.
    Matched MeSH terms: Waste Products
  20. Ong, Khai Lun, Tan, Bee Wai, Liew, Siew Ling
    MyJurnal
    In this study, pineapple cannery waste materials were used as substrate for the microbial production of vanillic acid and vanillin by Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL 39533. Biotransformation of ferulic acid from pineapple waste by A. niger I-1472 to vanillic acid was optimized using Response Surface Methodology (RSM). A central composite rotatable design was used to allocate treatment combinations and factors tested for their influence on vanillic acid production were inoculum size, yeast extract concentration, diammonium tartrate concentration and initial medium pH. The amount of vanillic acid produced was used as the response for the fermentation study and was assumed to be under the influence of the four factors tested. The estimated conditions for optimal vanillic acid production were inoculum size, 3.08 ×105 CFU mL-1; yeast extract, 0.37 gL-1; diammonium tartrate, 3.88 gL-1 and initial pH, 4.3. Subsequent biotransformation of vanillic acid by P. cinnabarinus MUCL 39533 to vanillin was enhanced with the addition of resin. Under these optimal conditions, 141.00 mgL-1 of vanillin was produced from 5 g of pineapple cannery waste.
    Matched MeSH terms: Waste Products
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links