Displaying publications 21 - 40 of 169 in total

Abstract:
Sort:
  1. Hasan Ruhaya, Nasruddin Jaafar, Marhazlinda Jamaluddin, Abdul Rashid Ismail, Noorliza Mastura Ismail, Tambi Chek Badariah, et al.
    MyJurnal
    This is a cross-sectional study in a representative sample of preschool children from 12 preschools (TADIKA KEMAS) Pasir Mas, Kelantan, Malaysia. Data on socioeconomic status and sources of water supply at home were collected through interview with mothers. Children’s anthropometric data (height and weight) and body-mass-index-for-age (BMI-for-age) was calculated. Oral examinations of ECC status was based on the dmft index (WHO, 1997). The results showed mean
    carious teeth were very high (dmft 11.1±4.8) and almost every preschool child was affected with ECC (prevalence 98.1%). The majority were in “high caries” category (i.e. dmft >7) and about 51.4% of preschoolers was underweight and only a few was overweight/obese. Preschool children with high caries mostly were underweight and normal of BMI. The BMI-for-age, household income and household expenditure for food were significant correlation with ECC experience (p
    Matched MeSH terms: Water Supply
  2. Maroufpoor S, Bozorg-Haddad O, Maroufpoor E, Gerbens-Leenes PW, Loáiciga HA, Savic D, et al.
    Sci Rep, 2021 10 25;11(1):21027.
    PMID: 34697363 DOI: 10.1038/s41598-021-00500-6
    The worsening water scarcity has imposed a significant stress on food production in many parts of the world. This stress becomes more critical when countries seek self-sufficiency. A literature review shows that food self-sufficiency has not been assessed as the main factor in determining the optimal cultivation patterns. However, food self-sufficiency is one of the main policies of these countries and requires the most attention and concentration. Previous works have focused on the virtual water trade to meet regional food demand and to calculate trade flows. The potential of the trade network can be exploited to improve the cropping pattern to ensure food and water security. To this end, and based on the research gaps mentioned, this study develops a method to link intra-country trade networks, food security, and total water footprints (WFs) to improve food security. The method is applied in Iran, a water-scarce country. The study shows that 781 × 106 m3 of water could be saved by creating a trade network. Results of the balanced trade network are input to a multi-objective optimization model to improve cropping patterns based on the objectives of achieving food security and preventing water crises. The method provides 400 management scenarios to improve cropping patterns considering 51 main crops in Iran. Results show a range of improvements in food security (19-45%) and a decrease in WFs (2-3%). The selected scenario for Iran would reduce the blue water footprint by 1207 × 106 m3, and reduce the cropland area by 19 × 103 ha. This methodology allows decision makers to develop policies that achieve food security under limited water resources in arid and semi-arid regions.
    Matched MeSH terms: Water Supply*
  3. Gabriel S, Khan NA, Siddiqui R
    J Water Health, 2019 Feb;17(1):160-171.
    PMID: 30758312 DOI: 10.2166/wh.2018.164
    The aim of this study was to determine the occurrence of free-living amoebae (FLA) in Peninsular Malaysia and to compare different methodologies to detect them from water samples. Water samples were collected from tap water, recreational places, water dispensers, filtered water, etc. and tested for FLA using both cultivation and polymerase chain reaction (PCR) via plating assays and centrifugation methods. Amoebae DNA was extracted using Instagene matrix and PCR was performed using genus-specific primers. Of 250 samples, 142 (56.8%) samples were positive for presence of amoebae, while 108 (43.2%) were negative. Recreational water showed higher prevalence of amoebae than tap water. PCR for the plating assays revealed the presence of Acanthamoeba in 91 (64%) samples and Naegleria in 99 (70%) of samples analysed. All samples tested were negative for B. mandrillaris. In contrast, the centrifugation method was less effective in detecting amoebae as only one sample revealed the presence of Acanthamoeba and 52 (29%) samples were positive for Naegleria. PCR assays were specific and sensitive, detecting as few as 10 cells. These findings show the vast distribution and presence of FLA in all 11 states of Peninsular Malaysia. Further studies could determine the possible presence of pathogenic species and strains of free-living amoebae in public water supplies in Malaysia.
    Matched MeSH terms: Water Supply/statistics & numerical data*
  4. Rahman S, Khan MT, Akib S, Din NB, Biswas SK, Shirazi SM
    ScientificWorldJournal, 2014;2014:721357.
    PMID: 24701186 DOI: 10.1155/2014/721357
    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3-N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.
    Matched MeSH terms: Water Supply
  5. Jaafar R, Omar I, Jidon AJ, Wan-Khamizar BW, Siti-Aishah BM, Sharifah-Noor-Akmal SH
    Med J Malaysia, 1993 Mar;48(1):86-92.
    PMID: 8341178
    The association of arsenical poisoning with the development of skin cancer is well-known. In Malaysia, arsenic has been shown to coexist with tin in tin-mining land. Our preliminary investigation has shown that the level of arsenic in well water from a tin-mining area is high. We report 3 patients with cutaneous lesions typical of chronic arsenical poisoning such as hyperpigmentation, keratoses and skin cancer. These patients have positive histories of previous domicility in tin-mining areas. We conclude that these patients developed chronic arsenical poisoning from drinking well water polluted with arsenic from the tin-mining soil.
    Matched MeSH terms: Water Supply*
  6. Zin, Thant, SabaiAung, Tin, Sahipudin Saupin, Myint, Than, KhinSN, Daw, Aung, Meiji Soe, et al.
    MyJurnal
    The lower percentage of water, sanitation and hygiene are the root causes of diarrhoea and cholera. Cholera is a sudden onset of acute watery diarrhoea which can progress to severe dehydration and death if untreated. The current pandemic, Vibrio Cholera O1 started in 1961. This study explores water, sanitation, hygiene and cholera and diarrhoea in three affected villages of Beluran District, Sabah Malaysia to support effective and timely public health intervention. This cross sectional study uses purposive sampling. All (114) households were interviewed and household water samples collected. The study reported lower coverage improved sanitation facilities (35.3% to 52.3%), no latrine at home (37% to 63%), improved water supply (52% to 60%), and prevalence of hand washing after toilet (57% - 74%). For water quality, Ecoli was present in household water (32% to 37%) but Vibrio cholerae was not isolated in any of the water samples tested. Statistically significant associations were found for; 1) occupation−nonagriculture and unimproved sanitation facility and 2) house ownership and correct knowledge of ORS preparation. Predictors for household water quality were: latrine at home, and improved household toilet. Aggressive strategies to improve water supply, sanitation and hygiene−hand washing after toilet−were recommended for future prevention of cholera and diarrhoea in the affected area.
    Matched MeSH terms: Water Supply
  7. Sekarajasekaran IA
    PMID: 538513
    Development of a human community are not without changes in its environment. Such changes result in either beneficial or adverse effects on human health. In Malaysia, in the wake of the New Economic Policy aimed at the redressing of the poor population and income distribution, development of the nation has brought about various changes in the environment. Some of these changes have elevated basic public health problems, while others, particularly new agricultural practices and industrialisation programmes with urbanisation trends, have brought a new set of problems due to water pollution and sanitation. Various measures are being taken to protect and to improve the environment so that progress can be realised with minimum adverse effects. This also calls for assistance from international sources, in terms of expertise, training and funds.
    Matched MeSH terms: Water Supply
  8. Foo LC, Mahmud N, Satgunasingam N
    Am J Public Health, 1998 Apr;88(4):680-1.
    PMID: 9551019
    Matched MeSH terms: Water Supply*
  9. Kong YL, Anis-Syakira J, Fun WH, Balqis-Ali NZ, Shakirah MS, Sararaks S
    PMID: 33137998 DOI: 10.3390/ijerph17217933
    Access to improved water and sanitation is essential. We describe these practices in Malaysia using data from a nationwide community survey and used logistic regression to assess the determinants. Of the 7978 living quarters (LQs), 58.3% were in urban areas. About 2.4%, 0.5% and 27.4% of LQs had non-improved water sources, non-improved toilet types and improper domestic waste disposal, respectively. Open burning was practiced by 26.1%. Water source was a problem for long houses (10.5%), squatters (8.5%) and shared houses (4.0%). Non-improved toilet types were 11.9% for squatters and 4.8% for shared houses. Improper domestic waste disposal practices were higher for occupants of village houses (64.2%), long houses (54.4%), single houses (45.8%) and squatters (35.6%). An increase in education or income level was associated with a decrease in improper domestic waste disposal methods. House type significantly affected water and sanitation after adjusting for the effects of other variables. Lower household income was associated with non-improved toilet types and improper domestic waste disposal. Lower education and rural location influenced domestic waste disposal. The water and toilet facilities in Malaysia were generally good, while domestic waste management practices could be improved. There remain pockets of communities with environmental challenges for the nation.
    Matched MeSH terms: Water Supply*
  10. See HH, Hauser PC, Ibrahim WA, Sanagi MM
    Electrophoresis, 2010 Jan;31(3):575-82.
    PMID: 20119968 DOI: 10.1002/elps.200900380
    Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE-C(4)D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field-enhanced sample injection, coupled with CE-C(4)D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01-0.1 microM (1.7-11.1 microg/L) and sensitivity enhancements of 48- to 53-fold were achieved with the large volume sample stacking-CE-C(4)D method. By performing the field-enhanced sample injection-CE-C(4)D procedure, excellent LODs down to 0.0005-0.02 microM (0.1-2.2 microg/L) as well as sensitivity enhancements of up to 245- to 1002-fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.
    Matched MeSH terms: Water Supply
  11. Samarakoon J
    Ambio, 2004 Feb;33(1-2):34-44.
    PMID: 15083648
    This article is based on the findings of the Global International Waters Assessment (GIWA) Subregion 53, Bay of Bengal. It introduces the Subregion. The wide disparity in development indicators in the Bay of Bengal Subregion (BOBSR) is presented. The large population of poor people living in South Asia is presented as a factor that needs special attention. The article focuses on the 3 geographic sites selected for detailed analysis: i) the Ganges-Brahmaputra-Meghna river systems; ii) the Merbok Estuary mangroves, Malaysia; and iii) the Sunderbans mangroves, Bangladesh. Integrated water management based upon regional cooperation among Bangladesh, India and Nepal holds opportunities for mutual benefit. Policy options are proposed. For mangrove ecosystems, the impacts of urbanization in Malaysia and the unmanaged expansion of shrimp farming in Bangladesh are analyzed. Improved governance was seen to hold promise for enhancing economic benefits from shrimp farming while safeguarding the natural ecological system. However, these measures need to be a part of national efforts to achieve the UN Millennium Development Goals.
    Matched MeSH terms: Water Supply*
  12. Lim CS, Shaharuddin MS, Sam WY
    Glob J Health Sci, 2013 Mar;5(2):1-12.
    PMID: 23445691 DOI: 10.5539/gjhs.v5n2p1
    A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK).
    Matched MeSH terms: Water Supply/statistics & numerical data
  13. Yunus AJ, Nakagoshi N, Salleh KO
    J Environ Sci (China), 2003 Mar;15(2):249-62.
    PMID: 12765268
    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
    Matched MeSH terms: Water Supply*
  14. Ting Lo N, Abul Bashar Sarker M, Ai Lian Lim Y, Harun-Or-Rashid M, Sakamoto J
    Nagoya J Med Sci, 2018 May;80(2):165-174.
    PMID: 29915434 DOI: 10.18999/nagjms.80.2.165
    Providing safe drinking-water to human civilization is indispensable; it is one of the most cost-effective means of reducing the disease burden of diarrhea. Unfortunately, water supply quality monitoring from public water treatment plants (WTPs) is often neglected or taken for granted. To determine the produced water quality, WTPs in Sarawak, Malaysia were assessed for their protozoa removal ability. A self-administered questionnaire based on the regulations in the Drinking-water Standards for New Zealand (DWSNZ) was developed. Optional 10-liter raw water samples were collected from willing WTPs for the detection of protozoan cysts. Routine physical and microbial testing of WTP parameters were also requested for raw water quality overview. Two of the nine assessed WTPs achieved three log credits in the treatment component, one of which belonged to Peninsular Malaysia. No log credits were obtained in the other tested components for any samples. Most of the WTPs employed "Coagulation, Sedimentation, and Filtration" using rapid gravity filters without enhancement (P < 0.05). Giardia cysts were detected in raw water sources used for treatment, and the geographical location was identified as an influencing factor for raw water quality. There is an urgent requirement for active collaboration and holistic approaches to review existing water management policies and interventions. WTPs in Sarawak did not achieve the log credits required to safeguard the microbial quality of the water supplied; however, only Giardia cysts were detected in 10-liter raw water samples despite routine microbial parameter monitoring showing disturbing contamination levels.
    Matched MeSH terms: Water Supply
  15. Roundy RW
    Soc Sci Med, 1985;20(3):293-300.
    PMID: 3975696
    The decade of the 1980s is declared as a time to solve global domestic water supply problems. By 1990 international goals include the provision of adequate quantities of clean water to every person on earth. Such goals are justified on the basis of human health, economic well being, political development and equity and public safety. Drawing upon observations from Ethiopia, Malaysia and Liberia, cases where attempts to provide domestic water to villagers and rural town dwellers are presented. In all cited cases attempts to provide safe water have failed or are in jeopardy. Conclusions drawn from these cases include acknowledgement that global goals will best be achieved by approaching local problems one-by-one and recognizing the technical, environmental and human constraints upon safe water provision interact differently from one site to another. To properly plan, implement and maintain safe water systems the current technical solutions must be combined with the contributions of social and environmental scientists on a case-by-case basis.
    Matched MeSH terms: Water Supply/standards*
  16. Tunbosun, Olawumi Edward, Rampal, Lekhraj, Hejar Abdul Rahman, Roslaini Abdul Majid
    MyJurnal
    Introduction: Worm infection is one of the major global public health problems especially among rural communities.
    Objectives: to determine the prevalence of intestinal worm infection and factors associated among Semai Aboriginal
    children aged between 6 to 13 years in Tapah, Malaysia. Methods: A cross-sectional study design was used in this
    study. The estimated sample size was 508. Data was collected using a validated pretested questionnaire. Faecal
    samples were also examined. Data was analysed using SPSS version 22. Results: The response rate was 80.9%.
    The overall mean age of the 411 respondents was 10.1 years(95% CI = 9.89, 10.22). Majority (71.5%) were poor.
    Prevalence of intestinal worm infections was 60.8% and 57.2% had multiple infections. The multiple logistic
    regression analysis showed that those with poor hygiene practices were 2.18 times the odds of worm infection
    when compared with children with good hygiene practices (95% CI = 1.4, 3.4). Similarly, poor attitudes towards
    prevention of worm infection increased the odds of having worm infection by 1.62 times among Orang Asli children.
    Children living without toilets had 2.45 times higher odds as compared with those who had proper toilets. Absence
    of river near by these areas where there is no safe water supply also increases the risk of worm infection among
    children by 1.84 times among Orang Asli children. Conclusions: the prevalence of worm infection is still very
    high among rural Aboriginal community. Current control measures should be reassessed to enable introduction of
    effective measures to reduce the worm infection among Orang Asli children.
    Matched MeSH terms: Water Supply
  17. Azlan A, Khoo HE, Idris MA, Ismail A, Razman MR
    ScientificWorldJournal, 2012;2012:403574.
    PMID: 22649292 DOI: 10.1100/2012/403574
    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
    Matched MeSH terms: Water Supply/standards*
  18. Azrina A, Khoo HE, Idris MA, Amin I, Razman MR
    Malays J Nutr, 2011 Aug;17(2):271-6.
    PMID: 22303580 MyJurnal
    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements.
    Matched MeSH terms: Water Supply*
  19. Choy SY, Prasad KM, Wu TY, Raghunandan ME, Ramanan RN
    J Environ Sci (China), 2014 Nov 1;26(11):2178-89.
    PMID: 25458671 DOI: 10.1016/j.jes.2014.09.024
    Rapid industrial developments coupled with surging population growth have complicated issues dealing with water scarcity as the quest for clean and sanitized water intensifies globally. Existing fresh water supplies could be contaminated with organic, inorganic and biological matters that have potential harm to the society. Turbidity in general is a measure of water cloudiness induced by such colloidal and suspended matters and is also one of the major criteria in raw water monitoring to meet the stipulated water quality guidelines. Turbidity reduction is often accomplished using chemical coagulants such as alum. The use of alum is widely associated with potential development of health issues and generation of voluminous sludge. Natural coagulants that are available in abundance can certainly be considered in addressing the drawbacks associated with the use of chemical coagulants. Twenty one types of plant-based natural coagulants categorized as fruit waste and others are identified and presented collectively with their research summary in this review. The barriers and prospects of commercialization of natural coagulants in near future are also discussed.
    Matched MeSH terms: Water Supply
  20. Abu-Alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M
    Sci Total Environ, 2018 Feb 15;615:972-989.
    PMID: 29751448 DOI: 10.1016/j.scitotenv.2017.09.320
    A comprehensive study was conducted to identify the salinization origins and the major hydrogeochemical processes controlling the salinization and deterioration of the Gaza coastal aquifer system through a combination approaches of statistical and geostatistical techniques, and detailed hydrogeochemical assessments. These analyses were applied on ten physicochemical variables for 219 wells using STATA/SE12 and Surfer softwares. Geostatistical analysis of the groundwater salinity showed that seawater intrusion along the coastline, and saltwater up-coning inland highly influenced the groundwater salinity of the study area. The hierarchical cluster analysis (HCA) technique yielded seven distinct hydrogeochemical signature clusters; (C1&C2: Eocene brackish water invasion, C3 saltwater up-coning, C4 human inputs, C5 seawater intrusion, C6 & C7 rainfall and mixing inputs). Box plot shows a wide variation of most of the ions while Chadha's plot elucidates the predominance of Na-Cl (71.6%) and Ca/Mg-Cl (25%) water types. It is found that, the highest and the lowest levels of salinization and the highest level of nitrate pollution were recorded in the northern area. This result reflects the sensitivity of this area to the human activities and/or natural actions. Around 90.4% of the wells are nitrate polluted. The main source of nitrate pollution is the sewage inputs while the farming inputs are very limited and restricted mostly in the sensitive northern area. Among the hydrogeochemical processes, ion exchange process was the most effective process all over the study area. Carbonate dissolution was common in the study area with the highest level in clusters 6, 7, 4 and 2 in the north while Gypsum dissolution was significant only in cluster 1 in the south and limited in the other clusters. This integrated multi-techniques research should be of benefit for effective utilization and management of the Gaza coastal aquifer system as well as for future work in other similar aquifers systems.
    Matched MeSH terms: Water Supply/statistics & numerical data*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links