Displaying publications 21 - 40 of 83 in total

Abstract:
Sort:
  1. Makhtar SNNM, Rahman MA, Ismail AF, Othman MHD, Jaafar J
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15918-15928.
    PMID: 28589281 DOI: 10.1007/s11356-017-9405-7
    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min(-1) flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m(-2) h(-1) bar(-1). The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.
    Matched MeSH terms: Zeolites
  2. Anis S, Zainal ZA, Bakar MZ
    Bioresour Technol, 2013 May;136:117-25.
    PMID: 23567671 DOI: 10.1016/j.biortech.2013.02.049
    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
    Matched MeSH terms: Zeolites/chemistry
  3. Wong CT, Abdullah AZ, Bhatia S
    J Hazard Mater, 2008 Sep 15;157(2-3):480-9.
    PMID: 18294771 DOI: 10.1016/j.jhazmat.2008.01.012
    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV)=15,000-32,000 h(-1), reaction temperature between 150 and 500 degrees C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 degrees C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively.
    Matched MeSH terms: Zeolites/chemistry*
  4. Chew TL, Bhatia S
    Bioresour Technol, 2009 May;100(9):2540-5.
    PMID: 19138514 DOI: 10.1016/j.biortech.2008.12.021
    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.
    Matched MeSH terms: Zeolites/chemistry
  5. Ahmed OH, Hussin A, Ahmad HM, Rahim AA, Majid NM
    ScientificWorldJournal, 2008 Apr 20;8:394-9.
    PMID: 18454247 DOI: 10.1100/tsw.2008.68
    Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.
    Matched MeSH terms: Zeolites/pharmacology*
  6. Tan KH, Awala H, Mukti RR, Wong KL, Rigaud B, Ling TC, et al.
    J Agric Food Chem, 2015 May 13;63(18):4655-63.
    PMID: 25897618 DOI: 10.1021/acs.jafc.5b00380
    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.
    Matched MeSH terms: Zeolites/chemistry*
  7. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Zeolites/chemistry*
  8. Adam MR, Salleh NM, Othman MHD, Matsuura T, Ali MH, Puteh MH, et al.
    J Environ Manage, 2018 Oct 15;224:252-262.
    PMID: 30055458 DOI: 10.1016/j.jenvman.2018.07.043
    Adsorption is one of the most efficient ways to remove heavy metal from wastewater. In this study, the adsorptive removal of hexavalent chromium, Cr (VI) from aqueous solution was investigated using natural zeolite, clinoptilolite, in the form of hollow fibre ceramic membrane (HFCM). The HFCM sample was prepared using phase inversion-based extrusion technique and followed by sintering process at different sintering temperatures in the range of 900-1050 °C. The fabricated HFCM was characterised using scanning electron microscopy (SEM), contact angle, water permeability, and mechanical strength for all HFCMs sintered at different temperatures. The adsorption and filtration test of Cr (VI) were performed using an in-house water permeation set up with a dead-end cross-flow permeation test. An asymmetric structure with sponge- and finger-like structures across the cross-section of HFCM was observed using SEM. Based on the characterisation data, 1050 °C was chosen to be the best sintering temperature as the water permeability and mechanical strength of this HFCM were 29.14 L/m2∙h and 50.92 MPa, respectively. The performance of the HFCM in adsorption/filtration was 44% of Cr (VI) removal at the Cr (VI) concentration of 40 mg/L and pH 4. In addition, the mathematical model was also performed in simulating the experimental data obtained from this study. All in all, the natural zeolite-based HFCM has a potential as a single-step Cr (VI) removal by membrane adsorption for the wastewater treatment.
    Matched MeSH terms: Zeolites*
  9. Li X, Gopinath SCB, Peng X, Lv J
    J Biomed Nanotechnol, 2021 Dec 01;17(12):2495-2504.
    PMID: 34974872 DOI: 10.1166/jbn.2021.3213
    An aptasensor was developed on an interdigitated microelectrode (IDME) by current-volt sensing for the diagnosis of ulcerative colitis by detecting the biomarker lipocalin-2. Higher immobilization of the anti-lipocalin-2 aptamer as a probe was achieved by using sodium dodecyl benzenesulfonate-aided zeolite particles. FESEM and FETEM observations revealed that the size of the zeolite particles was <200 nm, and they displayed a uniform distribution and spherical shape. XPS analysis attested the occurrence of Si, Al, and O groups on the zeolite particles. Zeolite particles were immobilized on IDME by a (3-aminopropyl)-trimethoxysilane amine linker, and then, the aptamer as the probe was tethered on the zeolite particles through a biotin-streptavidin strategy assisted by a bifunctional aldehyde linker. Due to the high occupancy of the aptamer and the efficient electric transfer from zeolite particles, higher changes in current can be observed upon interaction of the aptamer with lipocalin-2. The lower detection of lipocalin-2 was noted as 10 pg/mL, with a linear range from 10 pg/mL to 1 μg/mL and a linear regression equation of y=8E-07x+8E-08; R² = 0.991. Control experiments with complementary aptamer and matrix metalloproteinase-9 indicate the specific detection of lipocalin-2. Furthermore, spiking lipocalin-2 in human serum does not interfere with the identification.
    Matched MeSH terms: Zeolites*
  10. Alotaibi AM, Ismail AF, Aziman ES
    Sci Rep, 2023 Jun 08;13(1):9316.
    PMID: 37291241 DOI: 10.1038/s41598-023-36487-5
    This study investigated the efficacy of using phosphate-modified zeolite (PZ) as an adsorbent for removing thorium from aqueous solutions. The effects of various factors such as contact time, adsorbent mass, initial thorium concentration, and pH value of the solution on the removal efficiency were analyzed using the batch technique to obtain optimum adsorption condition. The results revealed that the optimal conditions for thorium adsorption were a contact time of 24 h, 0.03 g of PZ adsorbent, pH 3, and a temperature of 25 °C. Isotherm and kinetics parameters of the thorium adsorption on PZ were also determined, with equilibrium studies showing that the experimental data followed the Langmuir isotherm model. The maximum adsorption capacity (Qo) for thorium was found to be 17.3 mg/g with the Langmuir isotherm coefficient of 0.09 L/mg. Using phosphate anions to modify natural zeolite increased its adsorption capacity. Furthermore, adsorption kinetics studies demonstrated that the adsorption of thorium onto PZ adsorbent fitted well with the pseudo-second-order model. The applicability of the PZ adsorbent in removing thorium from real radioactive waste was also investigated, and nearly complete thorium removal was achieved (> 99%) from the leached solution obtained from cracking and leaching processes of rare earth industrial residue under optimized conditions. This study elucidates the potential of PZ adsorbent for efficient removal of thorium from rare earth residue via adsorption, leading to a reduction in waste volume for ultimate disposition.
    Matched MeSH terms: Zeolites*
  11. Jami MS, Rosli NS, Amosa MK
    Water Environ Res, 2016 Jun;88(6):566-76.
    PMID: 26556067 DOI: 10.2175/106143015X14362865227157
    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.
    Matched MeSH terms: Zeolites
  12. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2019 Mar 28;284:406-414.
    PMID: 30965196 DOI: 10.1016/j.biortech.2019.03.137
    This study investigated the catalytic co-pyrolysis of sugarcane bagasse (SCB) and waste high-density polyethylene (HDPE) over faujasite-type zeolite derived from electric arc furnace slag (FAU-EAFS) in a fixed-bed reactor. The effects of reaction temperature, catalyst-to-feedstock ratio, and HDPE-to-SCB ratio on product fractional yields and chemical compositions were discussed. The co-pyrolysis of SCB and HDPE over FAU-EAFS increased the liquid yield and enhanced the quality of bio-oil. The maximum bio-oil (68.56 wt%) and hydrocarbon yield (74.55%) with minimum yield of oxygenated compounds (acid = 0.57% and ester = 0.67%) were achieved under the optimum experimental conditions of catalyst-to-feedstock ratio of 1:6, HDPE-to-SCB ratio of 40:60, and temperature of 500 °C. The oil produced by catalytic co-pyrolysis had higher calorific value than the oil produced by the pyrolysis of SCB alone.
    Matched MeSH terms: Zeolites
  13. Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, et al.
    Angew Chem Int Ed Engl, 2021 Apr 26;60(18):10103-10111.
    PMID: 33620755 DOI: 10.1002/anie.202015635
    We present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches. DLA, as reported here, is a simple one-step synthesis strategy allowing high incorporation of Im linker into the ZIF-8 framework while still retaining its SOD topology. We fabricated mixed-matrix membranes (MMMs) with 6FDA-DAM polymer and Im/ZIF-8 obtained via DLA as a filler. The Im/ZIF-8-containing MMMs showed excellent performance for both propylene/propane and n-butane/i-butane separation, displaying permeability and ideal selectivity well above the polymer upper bound. Moreover, highly detailed molecular simulations shed light to the aperture size and flexibility response of Im/ZIF-8 and its improved diffusivity as compared to ZIF-8.
    Matched MeSH terms: Zeolites
  14. Lee HW, Farooq A, Jang SH, Kwon EE, Jae J, Lam SS, et al.
    Environ Res, 2020 May;184:109311.
    PMID: 32145550 DOI: 10.1016/j.envres.2020.109311
    Catalytic co-pyrolysis (CCP) of spent coffee ground (SCG) and cellulose over HZSM-5 and HY was characterized thermogravimetrically, and a catalytic pyrolysis of two samples was conducted using a tandem micro reactor that directly connected with gas chromatography-mass spectrometry. To access the more fundamental investigations on CCP, the effects of the zeolite pore structure, reaction temperature, in-situ/ex-situ reaction mode, catalyst to feedstock ratio, and the SCG and cellulose mixing ratio were experimentally evaluated. The temperature showing the highest thermal degradation rate of cellulose with SCG slightly delayed due to the interactions during the thermolysis of two samples. HZSM-5 in reference to HY produced more aromatic hydrocarbons from CCP. With respect to the reaction temperature, the formation of aromatic hydrocarbons increased with the pyrolytic temperature. Moreover, the in-situ/ex-situ reaction mode, catalyst/feedstock, and cellulose/SCG ratio were optimized to improve the aromatic hydrocarbon yield.
    Matched MeSH terms: Zeolites
  15. Kabir G, Mohd Din AT, Hameed BH
    Bioresour Technol, 2018 Feb;249:42-48.
    PMID: 29040858 DOI: 10.1016/j.biortech.2017.09.190
    The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite.
    Matched MeSH terms: Zeolites
  16. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
    Matched MeSH terms: Zeolites/isolation & purification*; Zeolites/chemistry*
  17. Gurdeep S, Harvinder S, Philip R, Amanjit K
    Med J Malaysia, 2006 Mar;61(1):112-3.
    PMID: 16708748
    A 60-year-old man who presented with nasopharyngitis developed uncontrollable epistaxis following a punch biopsy of the nasopharynx. QuickClot was successfully used to arrest the haemorrhage under general anaesthesia after the usual methods employed to secure haemostasis failed. The haemostatic plug was successfully removed a week later after control of the infection. This case represents the first reported intranasal use of QuickClot. We describe our experience and a literature review on this haemostatic agent.
    Matched MeSH terms: Zeolites/administration & dosage; Zeolites/therapeutic use*
  18. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Din IU, Selvaraj M, et al.
    Dalton Trans, 2021 Apr 07;50(13):4445-4469.
    PMID: 33720238 DOI: 10.1039/d1dt00456e
    One of the most crucial attributes of synthetic organic chemistry is to design organic reactions under the facets of green chemistry for the sustainable production of chemicals. Thus, due to the intensified environmental and safety concern, the need for new technologies for conducting chemical transformation has grown. In this regard, there is enormous interest in the use of heterogeneous catalysts as they generally avoid the generation of waste, require fewer toxic reagents, as well as entail easier separation and recycling of the catalyst. α,β-Unsaturated acids have been widely used in various industrial applications and have been identified as one of the most promising chemicals obtained via the Knoevenagel condensation reaction. This review aims to discuss the most pertinent heterogeneous catalytic systems such as zeolites, mesoporous silica, ionic liquids, metal oxides, and graphitic carbon nitride-based catalysts in the Knoevenagel reaction. Ultimately, this review focuses not only on the catalyst but also provides an overall idea and guide for the preparation of new catalysts with outstanding properties by looking at the chemical and engineering aspects such as the reaction conditions and the mechanisms.
    Matched MeSH terms: Zeolites
  19. Ng EP, Ahmad NH, Khoerunnisa F, Mintova S, Ling TC, Daou TJ
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924655 DOI: 10.3390/molecules26082238
    Offretite zeolite synthesis in the presence of cetyltrimethylammonium bromide (CTABr) is reported. The offretite crystals were synthesized with a high crystallinity and hexagonal prismatic shape after only 72 h of hydrothermal treatment at 180 °C. The CTABr has dual-functions during the crystallization of offretite, viz. as structure-directing agent and as mesoporogen. The resulting offretite crystals, with a Si/Al ratio of 4.1, possess more acid sites than the conventional offretite due to their high crystallinity and hierarchical structure. The synthesized offretite is also more reactive than its conventional counterpart in the acylation of 2-methylfuran for biofuel production under non-microwave instant heating condition, giving 83.5% conversion with 100% selectivity to the desired product 2-acetyl-5-methylfuran. Hence, this amphiphile synthesis approach offers another cost-effective and alternative route for crystallizing zeolite materials that require expensive organic templates.
    Matched MeSH terms: Zeolites
  20. Choo MY, Oi LE, Daou TJ, Ling TC, Lin YC, Centi G, et al.
    Materials (Basel), 2020 Jul 11;13(14).
    PMID: 32664579 DOI: 10.3390/ma13143104
    Nickel-based catalysts play an important role in the hydrogen-free deoxygenation for the production of biofuel. The yield and quality of the biofuel are critically affected by the physicochemical properties of NiO supported on nanosized zeolite Y (Y65, crystal size of 65 nm). Therefore, 10 wt% NiO supported on Y65 synthesized by using impregnation (IM) and deposition-precipitation (DP) methods were investigated. It was found that preparation methods have a significant effect on the deoxygenation of triolein. The initial rate of the DP method (14.8 goil·h-1) was 1.5 times higher than that of the IM method (9.6 goil·h-1). The DP-Y65 showed the best deoxygenation performance with a 80.0% conversion and a diesel selectivity of 93.7% at 380 °C within 1 h. The outstanding performance from the DP method was due to the smaller NiO particle size (3.57 ± 0.40 nm), high accessibility (H.F value of 0.084), and a higher Brönsted to Lewis acidity (B/L) ratio (0.29), which has improved the accessibility and deoxygenation ability of the catalyst. The NH4+ released from the decomposition of the urea during the DP process increased the B/L ratio of zeolite NaY. As a result, the pretreatment to convert Na-zeolite to H-zeolite in a conventional zeolite synthesis can be avoided. In this regard, the DP method offers a one-pot synthesis to produce smaller NiO-supported nanosized zeolite NaY with a high B/L ratio, and it managed to produce a higher yield with selectivity towards green diesel via deoxygenation under a hydrogen-free condition.
    Matched MeSH terms: Zeolites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links