Displaying publications 401 - 420 of 1525 in total

Abstract:
Sort:
  1. Saha K, Lajis NH, Israf DA, Hamzah AS, Khozirah S, Khamis S, et al.
    J Ethnopharmacol, 2004 Jun;92(2-3):263-7.
    PMID: 15138010
    Methanol extracts of seven Malaysian medicinal plants were screened for antioxidant and nitric oxide inhibitory activities. Antioxidant activity was measured by using FTC, TBA and DPPH free radical scavenging methods and Griess assay was used for the measurement of nitric oxide inhibition in lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-treated RAW 264.7 cells. All the extracts showed strong antioxidant activity comparable to or higher than that of alpha-tocopherol, BHT and quercetin in FTC and TBA methods. The extracts from Leea indica and Spermacoce articularis showed strong DPPH free radical scavenging activity comparable with quercetin, BHT and Vit C. Spermacoce exilis showed only moderate activity but other species were weak as compared to the standards. In the Griess assay Lasianthus oblongus, Chasalia chartacea, Hedyotis verticillata, Spermacoce articularis and Leea indica showed strong inhibitory activity on nitric oxide production in LPS and IFN-gamma-induced RAW 264.7 cells. Extracts from Psychotria rostrata and Spermacoce exilis also inhibited NO production but this was due to their cytotoxic effects upon cells during culture.
    Matched MeSH terms: Cell Survival/drug effects
  2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al.
    J Am Coll Cardiol, 2017 Jul 04;70(1):1-25.
    PMID: 28527533 DOI: 10.1016/j.jacc.2017.04.052
    BACKGROUND: The burden of cardiovascular diseases (CVDs) remains unclear in many regions of the world.

    OBJECTIVES: The GBD (Global Burden of Disease) 2015 study integrated data on disease incidence, prevalence, and mortality to produce consistent, up-to-date estimates for cardiovascular burden.

    METHODS: CVD mortality was estimated from vital registration and verbal autopsy data. CVD prevalence was estimated using modeling software and data from health surveys, prospective cohorts, health system administrative data, and registries. Years lived with disability (YLD) were estimated by multiplying prevalence by disability weights. Years of life lost (YLL) were estimated by multiplying age-specific CVD deaths by a reference life expectancy. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility.

    RESULTS: In 2015, there were an estimated 422.7 million cases of CVD (95% uncertainty interval: 415.53 to 427.87 million cases) and 17.92 million CVD deaths (95% uncertainty interval: 17.59 to 18.28 million CVD deaths). Declines in the age-standardized CVD death rate occurred between 1990 and 2015 in all high-income and some middle-income countries. Ischemic heart disease was the leading cause of CVD health lost globally, as well as in each world region, followed by stroke. As SDI increased beyond 0.25, the highest CVD mortality shifted from women to men. CVD mortality decreased sharply for both sexes in countries with an SDI >0.75.

    CONCLUSIONS: CVDs remain a major cause of health loss for all regions of the world. Sociodemographic change over the past 25 years has been associated with dramatic declines in CVD in regions with very high SDI, but only a gradual decrease or no change in most regions. Future updates of the GBD study can be used to guide policymakers who are focused on reducing the overall burden of noncommunicable disease and achieving specific global health targets for CVD.

    Matched MeSH terms: Survival Rate/trends
  3. Goh VJ, Tromp J, Teng TK, Tay WT, Van Der Meer P, Ling LH, et al.
    ESC Heart Fail, 2018 08;5(4):570-578.
    PMID: 29604185 DOI: 10.1002/ehf2.12279
    AIMS: Recent international heart failure (HF) guidelines recognize anaemia as an important comorbidity contributing to poor outcomes in HF, based on data mainly from Western populations. We sought to determine the prevalence, clinical correlates, and prognostic impact of anaemia in patients with HF with reduced ejection fraction across Asia.

    METHODS AND RESULTS: We prospectively studied 3886 Asian patients (60 ± 13 years, 21% women) with HF (ejection fraction ≤40%) from 11 regions in the Asian Sudden Cardiac Death in Heart Failure study. Anaemia was defined as haemoglobin <13 g/dL (men) and <12 g/dL (women). Ethnic groups included Chinese (33.0%), Indian (26.2%), Malay (15.1%), Japanese/Korean (20.2%), and others (5.6%). Overall, anaemia was present in 41%, with a wide range across ethnicities (33-54%). Indian ethnicity, older age, diabetes, and chronic kidney disease were independently associated with higher odds of anaemia (all P 

    Matched MeSH terms: Survival Rate/trends
  4. Elendran S, Muniyandy S, Lee WW, Palanisamy UD
    Food Funct, 2019 Feb 20;10(2):602-615.
    PMID: 30566155 DOI: 10.1039/c8fo01927d
    Ellagitannins, found abundantly in berries, pomegranates, walnuts and almonds, have been increasingly investigated for their health benefits. Geraniin (GE), an ellagitannin, found predominantly in herbal plants, as well has been shown to exhibit a number of biological activities. Like many hydrolysable tannins, geraniin is water-soluble and readily undergoes hydrolysis in the presence of hot water, weak acids and weak bases to yield several metabolites including corilagin (CO), ellagic acid (EA) and gallic acid (GA). There are numerous studies on the pharmacological effectiveness of GE, CO and GA. However, the intestinal permeability of GE and CO has never been investigated before. Caco-2 cell transport assay was utilized to evaluate the in vitro permeability of GE and its metabolites. GE, CO and EA were found to have no apparent permeability (Papp) while GA displayed a Papp value of 31.3 ± 1.1 × 10-6 cm s-1. Mass balance studies showed a loss of geraniin and its metabolites during transport. Chemical stability studies in the transport buffers revealed that GE and CO were hydrolyzed in the HBSS buffers. Experiments using lysed cells revealed that GE and its metabolites were metabolized during transport. Absorption and desorption studies confirmed the accumulation of EA inside the cells. The above results indicate that the compounds have poor oral absorption. To consider these compounds or their natural extracts as oral nutraceutical candidates, formulation strategies are mandatory.
    Matched MeSH terms: Cell Survival/drug effects
  5. Ling YS, Lim LR, Yong YS, Tamin O, Puah PY
    Nat Prod Res, 2020 Jun;34(12):1796-1803.
    PMID: 30587039 DOI: 10.1080/14786419.2018.1531288
    Soft coral, Sinularia sp. had been proven to inherit promising anti-cancer properties against variety of cancer. Current study, Sinularia sp. extract was introduced to Hepatocellular carcinoma (Hep 3B). Cell viability assay indicated the extract exhibit a dose and time dependent cytotoxicity. LC50 exhibited the lowest at 72 h post treatment estimated as 45.3 µg/mL. Morphological alterations including nuclear condensation, cytoplasm shrinkage and deformed cellular shape in treated Hep 3B were observable. Chemometric analysis revealed hydrophobic metabolites were significantly altered. Elevated vitamin D and derivatives tend to up-regulation Ca2+ and ROS subsequently triggering apoptosis. Dysregulated glycerolipids may suggest that they were biotransformed to compensate the needs of phospholipids during cell damage. Perturbation of sphingolipids, ceramide and carbohydrate-conjugated ceramides species increased the release of pro-apoptotic components reside within mitochondria and promote programmed cell death in treated Hep 3B. To conclude, MS-based metabolomics enabled the characterization of Sinularia sp. extract-induced cell death.
    Matched MeSH terms: Cell Survival/drug effects
  6. Hapidin H, Romli NAA, Abdullah H
    Microsc Res Tech, 2019 Nov;82(11):1928-1940.
    PMID: 31423711 DOI: 10.1002/jemt.23361
    Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
    Matched MeSH terms: Cell Survival/drug effects
  7. Rothan HA, Abdulrahman AY, Khazali AS, Nor Rashid N, Chong TT, Yusof R
    J. Pept. Sci., 2019 Aug;25(8):e3196.
    PMID: 31290226 DOI: 10.1002/psc.3196
    Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito-borne diseases whereas ZIKV infection occasionally re-emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β-alanyl-l-histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell-based assays were performed to validate the computational results. Mode-of-inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode-of-inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.
    Matched MeSH terms: Cell Survival/drug effects
  8. Saleem H, Htar TT, Naidu R, Nawawi NS, Ahmad I, Ashraf M, et al.
    Food Chem Toxicol, 2019 Jan;123:363-373.
    PMID: 30419323 DOI: 10.1016/j.fct.2018.11.016
    We investigated into the effects of methanol and dichloromethane extracts from aerial and roots of Filago germanica (L.) Huds (Astearaceae) on key enzymes (cholinesterases, α-glucosidase and urease), antioxidant capabilities, cytotoxic potential and secondary metabolomics profile. Total phenolic and flavonoids were determined by spectrophotometric technique and secondary metabolites composition by UHPLC-MS. Antioxidant activities were assessed employing free radical scavenging, ferric reducing power and phosphomolybdenum assays. The cell-toxicity was evaluated by MTT assay against breast (MCF-7, MDA-MB-231), cervix (CaSki) and prostate (DU-145) cancers. Overall, methanol extracts were found to have higher total bioactive contents and antioxidant potential. UHPLC-MS analysis revealed significant variation in the secondary metabolites in the methanol extracts. The most common derivatives belong to seven groups i.e. alkaloids, benzoic acids, flavones, flavonols, flavan-3-ols, terpenoids and saponins. The major polyphenolic compounds were found to be kampferol, robinin, luteolin, ferulic acid, benzoic acid and salicylic acid. All the extracts showed moderate cholinesterases inhibition, whereas methanol extracts exhibited highest urease inhibition and all extracts presented a relatively high inhibition against α-glucosidase. Similarly, all extracts showed strong to moderate cytotoxicity with IC50 values ranging from 53.02 to 382.7 μg/mL. Overall, results have suggested F. germanica to be a lead source for novel natural products.
    Matched MeSH terms: Cell Survival/drug effects
  9. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF
    Carbohydr Polym, 2014 Dec 19;114:312-320.
    PMID: 25263896 DOI: 10.1016/j.carbpol.2014.08.025
    Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.
    Matched MeSH terms: Cell Survival/drug effects
  10. Suwanprinya L, Morales NP, Sanvarinda P, Dieng H, Okabayashi T, Morales Vargas RE
    Jpn J Infect Dis, 2017 07 24;70(4):383-387.
    PMID: 28003593 DOI: 10.7883/yoken.JJID.2016.236
    Encephalitis has been described worldwide as a severe complication in patients infected by dengue virus. Reactive oxygen species (ROS) production is a key mechanism involved in the neuronal damage caused by viral encephalitis. In the present study, the capability of dengue virus serotypes 2 (DENV2) and DENV4 to induce ROS production was investigated in a rat microglial cell line, HAPI cells. The cells were infected with DENV2 and DENV4 at a multiplicity of infection of 0.1 for a 2-h adsorption period. Japanese encephalitis virus (JEV) was used as the reference. DENV2- and DENV4-induced microglial activation and significantly increased ROS production corresponded to decreased cell viability. The activity of DENV4 was significantly higher than the activities of DENV2 and JEV at 48 and 72 h post infection. DENV4 partly induced ROS production via an iron-induced Fenton reaction, as demonstrated by the treatment with an iron chelator, deferiprone. Despite the induction of increased inducible nitric oxide synthase expression and nitric oxide (NO) production by JEV, DENV2, and DENV4 did not induce NO production, suggesting the activation of different pathways in response to infections by different viruses. In conclusion, DENV2 and DENV4 have the capability to induce ROS production and activate microglia, which have been reported as the key components of neuronal damage.
    Matched MeSH terms: Cell Survival/drug effects
  11. Hasanpourghadi M, Majid NA, Mustafa MR
    Biochem Pharmacol, 2018 06;152:174-186.
    PMID: 29608909 DOI: 10.1016/j.bcp.2018.03.030
    We recently reported that methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) is a microtubule targeting agent (MTA) with multiple mechanisms of action including apoptosis in two human breast cancer cell-lines MCF-7 and MDA-MB-231. In the present study, investigation of early molecular events following MBIC treatment demonstrated the induction of autophagy. This early (<24 h) response to MBIC was characterized by accumulation of autophagy markers; LC3-II, Beclin1, autophagic proteins (ATGs) and collection of autophagosomes but with different variations in the two cell-lines. MBIC-induced autophagy was associated with generation of reactive oxygen species (ROS). In parallel, an increased activation of SAPK/JNK pathway was detected, as an intersection of ROS production and induction of autophagy. The cytotoxic effect of MBIC was enhanced by inhibition of autophagy through blockage of SAPK/JNK signaling, suggesting that MBIC-induced autophagy, is a possible cellular self-defense mechanism against toxicity of this agent in both breast cancer cell-lines. The present findings suggest that inhibition of autophagy eliminates the cytoprotective activity of MDA-MB-231 and MCF-7 cells, and sensitizes both the aggressive and non-aggressive human breast cancer cell-lines to the cytotoxic effects of MBIC.
    Matched MeSH terms: Cell Survival/drug effects
  12. Basu Baul TS, Dutta D, Duthie A, Prasad R, Rana NK, Koch B, et al.
    J Inorg Biochem, 2017 08;173:79-92.
    PMID: 28505480 DOI: 10.1016/j.jinorgbio.2017.04.020
    The cytotoxic potency of a series of triphenyltin(IV) compounds of general composition [Ph3Sn(Ln)] (1-6) has been probed in vitro employing MDA-MB-231 (human breast cancer) and HeLa (human cervical cancer) cell lines, where Ln=L1-3; isomeric 2/3/4-{(E)-2-[4-(dimethylamino)phenyl]diazenyl}benzoates and L4-6are their corresponding isoelectronic imino analogues 2/3/4-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoates. Compounds 1-6 have been characterized by elemental analysis and their spectroscopic properties were studied using IR and NMR (1H,13C,119Sn) techniques. The molecular structures of a pro-ligand 2-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoic acid (HL4) and two representative molecules, Ph3Sn(L2) 2 and Ph3Sn(L5) 5, have been determined by X-ray crystallography. Structural analyses of 2 and 5 revealed distorted tetrahedral geometries within C3O donor sets owing to monodentate modes of coordination of the respective carboxylate ligands, close intramolecular Sn…O(carbonyl) interactions notwithstanding. Cytotoxic studies in vitro in MDA-MB-231 and HeLa cell lines revealed high activity, in sub-micromolar range, for all investigated compounds. Among these, 1 and 3 exhibited potent cytotoxicity most effectively towards MDA-MB-231 cells with a IC50value of 1.19 and 1.44μM, respectively, whereas 5 showed remarkable activity towards HeLa cells with a IC50value of 0.88μM, yet the series of compounds had minimal cytotoxic effect on normal HEK 293 (human embryonic kidney) cell line. The underlying investigation suggested that the compounds exert potent antitumor effect by elevating intracellular reactive oxygen species generation and cause delay in cell cycle by inhibiting cells at G2/M phase. The results presented herein suggest further development of this class of triphenyltin(IV) compounds-based drugs as potential anti-cancer therapies should be pursued.
    Matched MeSH terms: Cell Survival/drug effects
  13. Yeo CI, Ooi KK, Akim AM, Ang KP, Fairuz ZA, Halim SN, et al.
    J Inorg Biochem, 2013 Oct;127:24-38.
    PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011
    The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
    Matched MeSH terms: Cell Survival/drug effects
  14. Yeo Y, Tan JBL, Lim LW, Tan KO, Heng BC, Lim WL
    Biomed Res Int, 2019;2019:3126376.
    PMID: 33204680 DOI: 10.1155/2019/3126376
    In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
    Matched MeSH terms: Cell Survival/drug effects
  15. Zarkasi KA, Jen-Kit T, Jubri Z
    Mini Rev Med Chem, 2019;19(17):1407-1426.
    PMID: 30706809 DOI: 10.2174/1389557519666190130164334
    Myocardial infarction is a major cause of deaths globally. Modulation of several molecular mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently, there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease. This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence the expression of a number of genes and their protein products. Essentially, it inhibits the molecular progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize the molecular understanding of the cardiomodulation in myocardial infarction as well as the mechanism of vitamin E protection.
    Matched MeSH terms: Cell Survival/drug effects
  16. Xin J, Wan Mahtar WNA, Siah PC, Miswan N, Khoo BY
    Mol Med Rep, 2019 Jun;19(6):5368-5376.
    PMID: 31059050 DOI: 10.3892/mmr.2019.10201
    Cancer chemotherapy possesses high toxicity, particularly when a higher concentration of drugs is administered to patients. Therefore, searching for more effective compounds to reduce the toxicity of treatments, while still producing similar effects as current chemotherapy regimens, is required. Currently, the search for potential anticancer agents involves a random, inaccurate process with strategic deficits and a lack of specific targets. For this reason, the initial in vitro high‑throughput steps in the screening process should be reviewed for rapid identification of the compounds that may serve as anticancer agents. The present study aimed to investigate the potential use of the Pichia pastoris strain SMD1168H expressing DNA topoisomerase I (SMD1168H‑TOPOI) in a yeast‑based assay for screening potential anticancer agents. The cell density that indicated the growth of the recombinant yeast without treatment was first measured by spectrophotometry. Subsequently, the effects of glutamate (agonist) and camptothecin (antagonist) on the recombinant yeast cell density were investigated using the same approach, and finally, the effect of camptothecin on various cell lines was determined and compared with its effect on recombinant yeast. The current study demonstrated that growth was enhanced in SMD1168H‑TOPOI as compared with that in SMD1168H. Glutamate also enhanced the growth of the SMD1168H; however, the growth effect was not enhanced in SMD1168H‑TOPOI treated with glutamate. By contrast, camptothecin caused only lower cell density and growth throughout the treatment of SMD1168H‑TOPOI. The findings of the current study indicated that SMD1168H‑TOPOI has similar characteristics to MDA‑MB‑231 cells; therefore, it can be used in a yeast‑based assay to screen for more effective compounds that may inhibit the growth of highly metastatic breast cancer cells.
    Matched MeSH terms: Cell Survival/drug effects
  17. Paudel KR, Wadhwa R, Mehta M, Chellappan DK, Hansbro PM, Dua K
    Toxicol In Vitro, 2020 Oct;68:104961.
    PMID: 32771431 DOI: 10.1016/j.tiv.2020.104961
    Airway inflammation and infections are the primary causes of damage in the airway epithelium, that lead to hypersecretion of mucus and airway hyper-responsiveness. The role of reactive oxygen species (ROS) and their components in the pathophysiological mechanisms of airway inflammation have been well-studied and emphasized for the past several decades. Rutin, a potent bioflavonoid, is well-known for its antioxidant, anti-inflammatory, especially in bronchial inflammation. However, poor solubility and rapid metabolism have led to its low bioavailability in biological systems, and hence limit its application. The present study aims to investigate the beneficial effects of rutin-loaded liquid crystalline nanoparticles (LCNs) against lipopolysaccharide (LPS) induced oxidative damage in human bronchial epithelial cell line (BEAS-2-B) cells in vitro. LPS was used to stimulate BEAS-2-B cells, causing the generation of nitric oxide (NO) and other reactive oxygen species (ROS) that had led to cellular apoptosis. The levels of NO and ROS were detected by, Griess reagent kit and dichlorodihydrofluorescein diacetate (DCFH-DA) respectively, whereas, cell apoptosis was studied by Annexin V-FITC and PI staining. The findings revealed that rutin-loaded LCNs significantly reduced NO, ROS levels and prevented apoptosis in BEAS-2B cells. The observations and findings provide a mechanistic understanding of the effectiveness of rutin-loaded LCNs in protecting the bronchial cells against airway inflammation, thus possessing a promising therapeutic option for the management of airway diseases.
    Matched MeSH terms: Cell Survival/drug effects
  18. Chappel L, Wong LC, Leong CO, Mai CW, Meikle IT, Stanforth SP, et al.
    Bioorg Med Chem Lett, 2020 02 15;30(4):126910.
    PMID: 31882300 DOI: 10.1016/j.bmcl.2019.126910
    Six N-nitroaryl-2-amino-1,3-dichloropropane derivatives have been prepared and evaluated against 18 cancer cell lines and two non-cancerous cell lines. Analysis of cell viability data and IC50 values indicated that the presence of a trifluoromethyl group in the nitroaryl moiety is an important structural feature associated with the compounds' cytotoxicities.
    Matched MeSH terms: Cell Survival/drug effects
  19. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Cell Survival/drug effects
  20. D'Souza UJ, Narayana K, Zain A, Raju S, Nizam HM, Noriah O
    Folia Morphol (Warsz), 2006 Feb;65(1):6-10.
    PMID: 16783728
    The effects of exposure to low doses of paraquat, a herbicide, via the dermal route were studied on the spermatozoa of Sprague-Dawley rats. Paraquat (1, 1'-dimethyl-4, 4'-bipyridinium dichloride) was administered once a day for five days, at intervals of 24 h at 0, 6, 15 and 30 mg/kg, and the rats were sacrificed on days 7, 14, 28, and 42 after the last exposure. The sperm suspensions were obtained by mincing the caudae epididymes and ductus deferens for the purpose of performing a sperm morphology test, sperm count and analysis of sperm mortality and sperm motility, as per the standard procedures. The sperm count was decreased (p < 0.05) only on days 7 and 14 but sperm abnormalities increased on all days (p < 0.05). Sperm mortality increased at higher dose-levels (p < 0.05) except on day 42, and motility was affected by 30 mg/kg only on day 42. In conclusion, paraquat is a genotoxic and cytotoxic agent to germ cells in the male rat.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links