This study aims to investigate the evidence of the efficacy of mindfulness-based stress reduction (MBSR) in improving stress, depression and anxiety in breast cancer patients.
The development of the biological synthesis of nanoparticles using microorganisms or plant extracts plays an important role in the field of nanotechnology as it is environmentally friendly and does not involve any harmful chemicals. In this study, the synthesis of silver nanoparticles using the leaves extract of Chinese tea from Camellia sinensis is reported. The synthesized nanoparticles were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis shows that the synthesized silver nanoparticles are of face-centered cubic structure. Well-dispersed silver nanoparticles with an approximate size of 4 nm were observed in the TEM image. The application of the green synthesized nanoparticles can be used in many fields such as cosmetics, foods, and medicine.
Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) was developed for the analysis of triazines. As model compounds four selected triazine herbicides namely, simazine, atrazine, secbumeton and cyanazine were employed to estimate the extraction efficiency. The experimental conditions were comprehensively studied for the DLLME-SFO method. Under the use of 10 μL of 1-undecanol as extraction solvent, 100 μL of acetonitrile as disperser solvent and 5% (w/v) NaCl for 3 min the results demonstrated that the repeatability (RSD%) of the optimised DLLME-SFO method ranged from 0.03% to 5.1% and the linearity in the range of 0.01-100 ppb. Low limits of detection (0.037-0.008 ppb), and good enrichment factors (195-322) were obtained. The DLLME-SFO method applied in water and sugarcane samples showed excellent relative recoveries (95.7-116.9%) with RSDs <8.6% (n=3) for all samples.
A simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE® multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith® performance RP-18e (100-4.6mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38-104.5% and RSDs were <4.4%. The method was applied to the determination of aflatoxins in peanut (9), rice (5) and chilli (10) samples. Liquid chromatography-tandem mass spectrometry analysis using triple quadruple analyser and operated in the multiple reaction monitoring modes on the contaminated samples was performed for confirmation.
Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
Myelodysplastic syndromes (MDS) are a group of haematological malignancies categorized by ineffective hematopoiesis that result in dysplasia. Although morphological diagnosis is a traditional and standard technique that is used for the diagnosis of MDS, the heterogeneous blood and bone marrow characteristics of MDS patients can potentially obscure the right diagnosis. Thus, we have utilized flow cytometric immunophenotyping as a supportive mechanism to obtain a more accurate and faster method for detection of abnormal markers in MDS. Flow cytometry was used for analyzing bone marrow samples from newly diagnosed MDS patients to investigate the abnormal antigen expression patterns in granulocytic, monocytic, erythroid, lymphoid lineages and myeloid precursors. The results were compared with those obtained from cases that had Idiopathic Thrombocytopenic Purpura (ITP) as a control. The most common abnormality found in the granulocytic lineage was the decrease of CD10. Low expressions of CD13 were the most frequent abnormality in the monocytic lineage. The erythroid lineage was found to have low expression of CD235A+/CD71+, reduce of CD71 and decreased CD235a. In conclusion, this method is useful for confirming cases in which it is difficult to make a diagnosis by morphology.
OBJECTIVE: Safety of fasting in Ramadan for diabetic patients is not clearly known. The aim of this study was to determine the effects of fasting on glycemic excursions by continuous glucose monitoring system (CGMS).
MATERIALS AND METHODS: This pilot, observational study conducted in the Endocrine Research Center, Mashhad University of Medical Sciences, Mashhad, IRAN, in Ramadan 2008. Seventeen well controlled patients with diabetes type 2 who were taking oral agents underwent 72 hour monitoring of glycemic excursions by CGMS one month before Ramadan and during Ramadan. The extent and duration of hyperglycemic and hypoglycemic events were evaluated and compared.
RESULTS: A significant reduction in hyperglycemic events was observed during Ramadan. The extent and duration of hypoglycemic events was not significantly different between two states (Ramadan and before). A significant increase in number of hypoglycemic events in Ramadan was found in patients who take sulfonylurea compared with those who take only metformin.
CONCLUSION: Fasting in Ramadan can be safe for well controlled patients with type 2 diabetes.
OBJECTIVE: To evaluate power doppler ultrasonography (PDU)-directed prostate biopsy in patients with elevated serum prostate specific antigen (PSA) levels.
MATERIALS AND METHODS: Men with serum total PSA levels of more than 4 ng/ml undergoing biopsy for the first time were included. Grey-scale transrectal ultrasound (TRUS) and PDU were performed. PDU signal on vascularity accumulation and perfusion characteristics were recorded and graded as normal or abnormal in the peripheral zone of the prostate. Abnormalities were defined on transverse image as radial or arc hypervascularities. A biopsy regime based on Vienna-normogram was performed in all patients.
RESULTS: Overall, prostate adenocarcinoma detection rate was 21.4% and abnormal accumulation on PDU signal was identified in 96.7% of those patients (p = 0.01). PDU directed prostate biopsies were positive in 66.7% of the patients with prostate cancer. The sensitivity, specificity, positive predictive value and negative predictive value of PDU signal alone for prostate cancer detection was 96.7%, 24.5% and 96.4% respectively, and PDU guided biopsies were 66.7%, 24.5%, 19.4% and 73% respectively.
CONCLUSIONS: The high sensitivity and negative predictive value of PDU makes it useful as an aid for TRUS biopsy in selected patient with previous negative biopsies at risk of harbouring prostate cancer.
The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.
The importance of bioethanol currently has increased tremendously as it can reduce the total dependency on fossil-fuels, especially gasoline, in the transportation sector. In this study, Ceiba pentandra (kapok fiber) was introduced as a new resource for bioethanol production. The results of chemical composition analysis showed that the cellulose (alpha- and beta-) contents were 50.7%. The glucose composition of the fiber was 59.8%. The high glucose content indicated that kapok fiber is a potential substrate for bioethanol production. However, without a pretreatment, the kapok fiber only yielded 0.8% of reducing sugar by enzymatic hydrolysis. Thus, it is necessary to pre-treat the kapok fiber prior to hydrolysis. Taking into account environmentally friendliness, only simple pretreatments with minimum chemical or energy consumption was considered. It was interesting to see that by adopting merely water, acid and alkaline pretreatments, the yield of reducing sugar was increased to 39.1%, 85.2% and >100%, respectively.
In this study, the methanolysis process of sunflower oil was investigated to get high methyl esters (biodiesel) content using sodium methoxide. To reach to the best process conditions, central composite design (CCD) through response surface methodology (RSM) was employed. The optimal conditions predicted were the reaction time of 60 min, an excess stoichiometric amount of alcohol to oil ratio of 25%w/w and the catalyst content of 0.5%w/w, which lead to the highest methyl ester content (100%w/w). The methyl ester content of the mixture from gas chromatography analysis (GC) was compared to that of optimum point. Results, confirmed that there was no significant difference between the fatty acid methyl ester content of sunflower oil produced under the optimized condition and the experimental value (P ≥ 0.05). Furthermore, some fuel specifications of the resultant biodiesel were tested according to American standards for testing of materials (ASTM) methods. The outcome showed that the methyl ester mixture produced from the optimized condition met nearly most of the important biodiesel specifications recommended in ASTM D 6751 requirements. Thus, the sunflower oil methyl esters resulted from this study could be a suitable alternative for petrol diesels.
The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.
Analyses of tocols (tocopherols and tocotrienols) in palm oil have been extensively reported in the past. However, due to the scarcity of individual tocotrienol standards, calibrations have mostly been carried out using only α-tocopherol as standard. Moreover, even if the individual tocotrienols are being used, their reliability is often questioned, because tocotrienols are highly susceptible to oxidation and deterioration. This paper reports on the study of the deterioration rate of individual tocotrienol standards upon storage as well as different calibration methods for the tocols in palm oil.
Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.
Telemedicine innovations, including short message service (SMS), have been used to address a range of health concerns in a variety of settings. Practical, safe, and cost-effective, this simple tool can also potentially improve patients' understanding toward their own diseases via knowledge enhancement. This study was designed to develop and assess the feasibility and acceptability of an SMS-based epilepsy educational program for epilepsy patients.
Matched MeSH terms: Patient Education as Topic/methods*
Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity.
Matched MeSH terms: Conservation of Energy Resources/methods*
A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
Saliva has been suggested as an attractive resource for evaluating physiological and pathological conditions in humans. This study aims to evaluate saliva sampling as an alternative to blood sampling for molecular testing.
BACKGROUND: Visual acuity is an essential estimate to assess ability of the visual system and is used as an indicator of ocular health status.
AIM: The aim of this study is to investigate the consistency of acuity estimates from three different clinical visual acuity charts under two levels of ambient room illumination.
MATERIALS AND METHODS: This study involved thirty Malay university students aged between 19 and 23 years old (7 males, 23 females), with their spherical refractive error ranging between plano and -7.75D, astigmatism ranging from plano to -1.75D, anisometropia less than 1.00D and with no history of ocular injury or pathology. Right eye visual acuity (recorded in logMAR unit) was measured with Snellen letter chart (Snellen), wall mounted letter chart (WM) and projected letter chart (PC) under two ambient room illuminations, room light on and room light off.
RESULTS: Visual acuity estimates showed no statistically significant difference when measured with the room light on and with the room light off (F1,372 = 0.26, P = 0.61). Post-hoc analysis with Tukey showed that visual acuity estimates were significantly different between the Snellen and PC (P = 0.009) and between Snellen and WM (P = 0.002).
CONCLUSIONS: Different levels of ambient room illumination had no significant effect on visual acuity estimates. However, the discrepancies in estimates of visual acuity noted in this study were purely due to the type of letter chart used.