Displaying publications 501 - 520 of 6933 in total

Abstract:
Sort:
  1. Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;118:111466.
    PMID: 33255048 DOI: 10.1016/j.msec.2020.111466
    This work is aimed to develop a biocompatible, bactericidal and mechanically stable biomaterial to overcome the challenges associated with calcium phosphate bioceramics. The influence of chemical composition on synthesis temperature, bioactivity, antibacterial activity and mechanical stability of least explored calcium silicate bioceramics was studied. The current study also investigates the biomedical applications of rankinite (Ca3Si2O7) for the first time. Sol-gel combustion method was employed for their preparation using citric acid as a fuel. Differential thermal analysis indicated that the crystallization of larnite and rankinite occurred at 795 °C and 1000 °C respectively. The transformation of secondary phases into the desired product was confirmed by XRD and FT-IR. TEM micrographs showed the particle size of larnite in the range of 100-200 nm. The surface of the samples was entirely covered by the dominant apatite phase within one week of immersion. Moreover, the compressive strength of larnite and rankinite was found to be 143 MPa and 233 MPa even after 28 days of soaking in SBF. Both samples prevented the growth of clinical pathogens at a concentration of 2 mg/mL. Larnite and rankinite supported the adhesion, proliferation and osteogenic differentiation of hBMSCs. The variation in chemical composition was found to influence the properties of larnite and rankinite. The results observed in this work signify that these materials not only exhibit faster biomineralization ability, excellent cytocompatibility but also enhanced mechanical stability and antibacterial properties.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Biocompatible Materials/pharmacology
  2. Islahudin F, Ting KN, Pleass RJ, Avery SV
    Antimicrob Agents Chemother, 2013 Nov;57(11):5787.
    PMID: 24123347 DOI: 10.1128/AAC.01688-13
    Matched MeSH terms: Antimalarials/pharmacology*; Chloroquine/pharmacology*
  3. Loke SR, Sing KW, Teoh GN, Lee HL
    Trop Biomed, 2015 Mar;32(1):76-83.
    PMID: 25801256 MyJurnal
    Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality.
    Matched MeSH terms: Fenitrothion/pharmacology*; Insecticides/pharmacology*
  4. Kim YM, Abas F, Park YS, Park YK, Ham KS, Kang SG, et al.
    Molecules, 2021 Jul 21;26(15).
    PMID: 34361562 DOI: 10.3390/molecules26154405
    Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), α-β-globulin (α-β G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, α-β G and Fgn will be predictors of coronary artery disease (CAD).
    Matched MeSH terms: Antioxidants/pharmacology; Polyphenols/pharmacology
  5. Appalasamy S, Diyana MHA, Arumugam N, Boon JG
    Sci Rep, 2021 01 08;11(1):153.
    PMID: 33420232 DOI: 10.1038/s41598-020-80018-5
    The use of chemical insecticides has had many adverse effects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fluid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC-MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography-mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained five insecticidal and three repellent compounds. The most obvious finding was that G. sulphureus defense fluid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fluids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fluid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products.
    Matched MeSH terms: Insect Repellents/pharmacology*; Insecticides/pharmacology
  6. Raju SV, Sarkar P, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, et al.
    PMID: 33465517 DOI: 10.1016/j.cbpc.2021.108974
    Development of antimicrobial drugs against multidrug-resistant (MDR) bacteria is a great focus in recent years. TG12, a short peptide molecule used in this study was screened from tachykinin (Tac) protein of an established teleost Channa striatus (Cs) transcriptome. Tachykinin cDNA has 345 coding sequence, that denotes a protein contained 115 amino acids; in which a short peptide (TG12) was identified at 83-94. Tachykinin mRNA upregulated in C. striatus treated with Aeromonas hydrophila and Escherichia coli lipopolysaccharide (LPS). The mRNA up-regulation was studied using real-time PCR. The up-regulation tachykinin mRNA pattern confirmed the immune involvement of tachykinin in C. striatus during infection. Further, the identified peptide, TG12 was synthesized and its toxicity was demonstrated in hemolytic and cytotoxic assays using human erythrocytes and human dermal fibroblast cells, respectively. The toxicity study exhibited that the toxicity of TG12 was similar to negative control, phosphate buffer saline (PBS). Moreover, the antibiogram of TG12 was active against Klebsiella pneumonia ATCC 27736, a major MDR bacterial pathogen. Further, the antimicrobial activity of TG12 against pathogenic bacteria was screened using minimum inhibitory concentration (MIC) and anti-biofilm assays, altogether TG12 showed potential activity against K. pneumonia. Fluorescence assisted cell sorter flow cytometer analysis (FACS) and field emission scanning electron microscopy (FESEM) was carried on TG12 with K. pneumonia; the results showed that TG12 significantly reduced K. pneumonia viability as well as TG12 disrupt its membrane. In conclusion, TG12 of CsTac is potentially involved in the antibacterial immune mechanisms, which has a prospectus efficiency in pharma industry against MDR strains, especially K. pneumonia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Tachykinins/pharmacology*
  7. Takemori N, Ooi HK, Imai G, Saio M
    Trop Biomed, 2021 Sep 01;38(3):343-352.
    PMID: 34508342 DOI: 10.47665/tb.38.3.077
    Outbreak of SARS-CoV-2 has been declared a pandemic, which is a serious threat to human health. The disease was named coronavirus disease 2019 (COVID-19). Until now, several vaccines and a few drugs have been approved for the prevention and treatment for COVID-19. Recently, the effect of some macrolides including clarithromycin (CAM) on COVID-19 has attracted attention. CAM is known to have diverse effects including immunomodulatory and immunosuppressive effects, autophagy inhibition, steroid sparing effect, reversibility of drug resistance, antineoplastic effect, antiviral effect as well as bacteriostatic/bactericidal effect. Many patients with COVID-19 died due to an overwhelming response of their own immune system characterized by the uncontrolled release of circulating inflammatory cytokines (cytokine release syndrome [CRS]). This CRS plays a major role in progressing pneumonia to acute respiratory distress syndrome (ARDS) in COVID-19 patients. It is noteworthy that CAM can suppress inflammatory cytokines responsible for CRS and also has anti-SARS-CoV-2 effect. Considering the rapidly progressive global disease burden of COVID 19, the application of CAM for treating COVID-19 needs to be urgently evaluated. Recently, an open-labeled non-randomized trial using CAM for treating COVID-19 (ACHIEVE) was initiated in Greece in May, 2020. Its results, though preprint, indicated that CAM treatment of patients with moderate COVID-19 was associated with early clinical improvement and containment of viral load. Thus, treatment with CAM as a single agent or combined with other anti-SARS CoV-2 drugs should be tried for treating COVID-19. In this article, we discussed the significance and usefulness of CAM in treating COVID-19.
    Matched MeSH terms: Immunologic Factors/pharmacology; Clarithromycin/pharmacology
  8. Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B, Seyed MA
    Mol Med Rep, 2017 Mar;15(3):1007-1016.
    PMID: 28112383 DOI: 10.3892/mmr.2017.6133
    The study of wound‑healing plants has acquired an interdisciplinary nature with a systematic investigational approach. Several biochemicals are involved in the healing process of the body, including antioxidants and cytokines. Although several pharmaceutical preparations and formulations are available for wound care and management, it remains necessary to search for efficacious treatments, as certain current formulations cause adverse effects or lack efficacy. Phytochemicals or biomarkers from numerous plants suggest they have positive effects on different stages of the wound healing process via various mechanisms. Several herbal medicines have displayed marked activity in the management of wounds and various natural compounds have verified in vivo wound healing potential, and can, therefore, be considered as potential drugs of natural origin. Chromolaena odorata (L.) R.M. King and H. Robinson is considered a tropical weed. However, it exhibits anti‑inflammatory, antipyretic, analgesic, antimicrobial, cytotoxic and numerous other relevant medicinal properties on an appreciable scale, and is known in some parts of the world as a traditional medicine used to treat various ailments. To understand its specific role as nature's gift for healing wounds and its contribution to affordable healthcare, this plant must be scientifically assessed based on the available literature. This review aims to summarize the role of C. odorata and its biomarkers in the wound healing activities of biological systems, which are crucial to its potential future drug design, development and application for the treatment of wounds.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Preparations/pharmacology
  9. Zaidun NH, Thent ZC, Latiff AA
    Life Sci, 2018 Sep 01;208:111-122.
    PMID: 30021118 DOI: 10.1016/j.lfs.2018.07.017
    The incidence of diseases related to oxidative stress disorders have been increased dramatically. Alternatives medicine or the active compound extracted from the natural products received great attention among researches at the present era. Naringenin (NG), a common dietary flavanone, found in the citrus fruits such as oranges, bergamots, lemons and grapefruit. It is used in the several oxidative stress disorders as the nutraceutical value of the compound emerges. Functionally, the antioxidants effect of NG is primarily attributed by reducing the free radical like reactive oxygen species (ROS) and enhancing the antioxidants activity such as superoxide dismutase (SOD), catalase, glutathione (GSH) in chronic diseases such as cardiovascular, neurodegenerative, diabetes, pulmonary, cancer and nephropathy. The present review article summarised the antioxidant property of NG and its molecular mechanism towards such diseases. Pubmed, Science Direct, Scopus, Web of Science and Google scholar were searched using the terms 'naringenin', 'oxidative stress disorders', 'naringenin and cardiovascular diseases', 'naringenin and diabetes mellitus', 'naringenin and neurodegenerative diseases', 'naringenin and pulmonary diseases', 'naringenin and cancer' and 'naringenin and nephropathy'. There has been special attention on evaluating anti-oxidative effect of NG on neurodegenerative diseases. Although some mechanisms of action remain vague, the current review highlighted the potential use of NG as a oxidative stress reliever which can be used as next prophylaxis compound in the treatment of the various oxidative stress disorders.
    Matched MeSH terms: Anti-Ulcer Agents/pharmacology*; Flavanones/pharmacology*
  10. Thong QX, Wong CL, Ooi MK, Kueh CL, Ho KL, Alitheen NB, et al.
    J Gen Virol, 2018 09;99(9):1227-1238.
    PMID: 30041713 DOI: 10.1099/jgv.0.001116
    Macrobrachium rosenbergii nodavirus (MrNv) causes white tail disease (WTD) in giant freshwater prawns, which leads to devastating economic losses in the aquaculture industry. Despite extensive research on MrNv, there is still no antiviral agent to treat WTD. Thus, the main aim of this study was to identify potential anti-MrNv molecules. A 12-mer phage-displayed peptide library was biopanned against the MrNv virus-like particle (VLP). After four rounds of biopanning, two dominant phages harbouring the amino acid sequences HTKQIPRHIYSA and VSRHQSWHPHDL were selected. An equilibrium binding assay in solution was performed to determine the relative dissociation constant (KDrel) of the interaction between the MrNv VLP and the selected fusion phages. Phage-HTKQIPRHIYSA has a KDrel value of 92.4±22.8 nM, and phage-VSRHQSWHPHDL has a KDrel value of 12.7±3.8 nM. An in-cell elisa was used to determine the inhibitory effect of the synthetic peptides towards the entry of MrNv VLP into Spodoptera frugiperda (Sf9) cells. Peptides HTKQIPRHIYSA and VSRHQSWHPHDL inhibited the entry of the MrNv VLP into Sf9 cells with IC50 values of 30.4±3.6 and 26.5±8.8 µM, respectively. Combination of both peptides showed a significantly higher inhibitory effect with an IC50 of 4.9±0.4 µM. An MTT assay revealed that the viability of MrNv-infected cells increased to about 97 % in the presence of both peptides. A real-time RT-PCR assay showed that simultaneous application of both peptides significantly reduced the number of MrNv per infected cell, from 97±9 to 11±4. These peptides are lead compounds which can be further developed into potent anti-MrNv agents.
    Matched MeSH terms: Antiviral Agents/pharmacology*; Peptides/pharmacology*
  11. MohdMaidin N, Oruna-Concha MJ, Jauregi P
    Food Chem, 2019 Jan 15;271:224-231.
    PMID: 30236671 DOI: 10.1016/j.foodchem.2018.07.083
    Red grape pomace, a wine-making by-product is rich in anthocyanins and has many applications in food and pharmaceutical industry. However, anthocyanins are unstable during processing and storage. This study aimed to investigate the stability of anthocyanins obtained by hydroalcoholic extraction (with and without sorbic acid) and colloidal gas aphrons (CGA) separation; a surfactant (TWEEN20) based separation. Anthocyanins in CGA samples showed higher stability (half-life = 55 d) than in the crude extract (half-life = 43 d) and their stability increased with the concentration of TWEEN20 in the CGA fraction (6.07-8.58 mM). The anthocyanins loss in the CGA sample (with the maximum content of surfactant, 8.58 mM) was 34.90%, comparable to that in the crude ethanolic extract with sorbic acid (EE-SA) (31.53%) and lower than in the crude extract (44%). Colour stabilisation was also observed which correlated well with the stability of individual anthocyanins in the EE and CGA samples. Malvidin-3-o-glucoside was the most stable anthocyanin over time.
    Matched MeSH terms: Polysorbates/pharmacology*; Surface-Active Agents/pharmacology*
  12. Lim V, Schneider E, Wu H, Pang IH
    Nutrients, 2018 Oct 26;10(11).
    PMID: 30373159 DOI: 10.3390/nu10111580
    Cataract is an eye disease with clouding of the eye lens leading to disrupted vision, which often develops slowly and causes blurriness of the eyesight. Although the restoration of the vision in people with cataract is conducted through surgery, the costs and risks remain an issue. Botanical drugs have been evaluated for their potential efficacies in reducing cataract formation decades ago and major active phytoconstituents were isolated from the plant extracts. The aim of this review is to find effective phytoconstituents in cataract treatments in vitro, ex vivo, and in vivo. A literature search was synthesized from the databases of Pubmed, Science Direct, Google Scholar, Web of Science, and Scopus using different combinations of keywords. Selection of all manuscripts were based on inclusion and exclusion criteria together with analysis of publication year, plant species, isolated phytoconstituents, and evaluated cataract activities. Scientists have focused their attention not only for anti-cataract activity in vitro, but also in ex vivo and in vivo from the review of active phytoconstituents in medicinal plants. In our present review, we identified 58 active phytoconstituents with strong anti-cataract effects at in vitro and ex vivo with lack of in vivo studies. Considering the benefits of anti-cataract activities require critical evaluation, more in vivo and clinical trials need to be conducted to increase our understanding on the possible mechanisms of action and the therapeutic effects.
    Matched MeSH terms: Plant Extracts/pharmacology*; Phytochemicals/pharmacology*
  13. Pavithra K, Saravanan G
    PMID: 32048980 DOI: 10.2174/1871525718666200212095353
    Nature is an amazing source for food, shelter, clothing and medicine. An impressive number of modern drugs are isolated from many sources like plants, animals and microbes. The development of natural products from traditional medicines is of great importance to society. Modern concepts and methodologies with abundant clinical studies, unique diversity of chemical structures and biological activities aid the modern drug discovery process. Kedrostis foetidissima (Jacq.) Cogn., a traditional medicinal plant of the Cucurbitaceae family, is found in India, Sri Lanka, Ethiopia and Western Malaysia. Almost all parts of the plant are used in traditional systems of medicines and reported having medicinal properties in both in vitro and in vivo studies. In the last few years, extensive research work had been carried out using extracts and isolated phytoconstituents from Kedrostis foetidissima to confirm its pharmacology and biological activities. Many scientific reports show that crude extracts and extensive numbers of phytochemical constituents isolated from Kedrostis foetidissima have activities like antimicrobial, antioxidant, anticancer, gastroprotective, anti-inflammatory and various other important medicinal properties. The therapeutic properties of the plants are mainly attributed to the existence of phytoconstituents like phenols, alkaloids, flavonoids, tannins, terpenoids and steroids. This comprehensive review in various aspects gave a brief overview of phytoconstituents, nutritional values and medicinal property of the plant and might attract the researchers to explore its medicinal activity by discovering novel biologically active compounds that can serve as a lead compound in pharmaceutical and food industry.
    Matched MeSH terms: Plant Extracts/pharmacology; Phytochemicals/pharmacology
  14. Ibrahim YB, Yee TS
    J Econ Entomol, 2000 Aug;93(4):1085-9.
    PMID: 10985016
    Effects of sublethal exposure to abamectin on the biological performance of Neoseiulus longispinosus (Evans) were studied under ambient laboratory conditions of 28 +/- 2 degrees C and 80 +/- 15% RH with 24 h light. The red form of the twospotted spider mite, Tetranychus urticae Koch, complex (Acari: Tetranychidae), was offered as prey. The LC50 obtained from the contact bioassay at 48 h after treatment was 0.015 ppm (AI). A big change in kill for a given variation in dosage for the regression slope probably indicated that abamectin was unlikely selective. Sublethal exposure to abamectin caused a reduction in survival with the female reaching 50% mortality by the sixth day and the male 4 d later. The mean preoviposition period was extended by almost 1 d, whereas the mean oviposition period was shortened by almost 5 d causing a reduction in the mean fecundity female-1 to almost half that of the untreated females. The net reproductive rate (Ro), the intrinsic rate of increase (rm), and the finite rate of increase (lambda) of the treated females were markedly inferior. Treated males were seriously affected; the mean life span was almost half that of the untreated.
    Matched MeSH terms: Insecticides/pharmacology*; Ivermectin/pharmacology
  15. Chigurupati S, Vijayabalan S, Selvarajan KK, Alhowail A, Kauser F
    J Complement Integr Med, 2020 Dec 22;18(2):319-325.
    PMID: 34187119 DOI: 10.1515/jcim-2020-0203
    OBJECTIVES: Research on endosymbionts is emerging globally and is considered as a potential source of bioactive phytochemicals. The present study examines the antioxidant and antidiabetic of the endophytic crude extract isolated from Leucaena leucocephala leaves.

    METHODS: Endophytic bacteria were isolated from the leaves of L. leucocephala and 16S rRNA gene sequencing was used to establish their identity. The in vitro antioxidant effect of endophytic crude extract (LL) was evaluated using 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical scavenging methods. The in vitro antidiabetic properties of LL were evaluated using α-amylase and α-glucosidase enzyme inhibition assay.

    RESULTS: The isolated endophytic bacteria were identified as Cronobacter sakazakii. LL displayed potent free radical scavenging effect against ABTS and DPPH radicals with an inhibitory concentration 50% (IC50) value of 17.49 ± 0.06 and 11.3 ± 0.1 μg/mL respectively. LL exhibited α-amylase and α-glucosidase inhibition with an IC50 value of 23.3 ± 0.08 and 23.4 ± 0.1 μg/mL respectively compared to the standard drug (acarbose). Both glucose loaded normoglycemic rats and STZ induced diabetic rats treated with LL (200 mg/kg) exhibited a considerable reduction in blood glucose levels p<0.01 after 8 h of treatment when compared to normal and diabetic control rats respectively.

    CONCLUSIONS: Thus, the study shows that LL has a wellspring of natural source of antioxidants, and antidiabetic agents and phytoconstituents present in endophytes could be the rich source for bioactive compounds.

    Matched MeSH terms: Hypoglycemic Agents/pharmacology; Plant Extracts/pharmacology
  16. Rasidin RSM, Suhaili Z, Mohamed AFS, Hod R, Neela V, Amin-Nordin S
    Trop Biomed, 2020 Jun 01;37(2):471-481.
    PMID: 33612816
    Nosocomial infection caused by Acinetobacter baumannii is common among immunocompromised patients. Treatment strategy is limited due to rapid resistance development and lack of novel antibiotic. Colistin has been the last line therapy with good in vitro activity against infections caused by multi-drug resistance A. baumannii. However, pharmacological updates are required to support dosing optimisation. This study aimed to determine the time-kill kinetic and resistance development after antibiotic exposure as well as post-antibiotic effect of colistin at different static concentrations in in vitro A. baumannii system. The static in vitro time-kill and post-antibiotic effect experiments were conducted against two clinical isolates as well as one reference isolate ATCC 19606. Time-kill and postantibiotic effect were studied at colistin concentrations ranging from 0.25MIC to 16.0MIC and 0.5MIC to 4.0MIC, respectively. Post-exposure resistance development was examined in time-kill study. Killing activity and post-antibiotic effect were in a concentration-dependent manner. However, delayed killing activity indicates colistin tolerance. Development of resistance after exposure was not detected except for the ATCC 19606 strain. Dosing suggestion based on the observations include administration of supplemental dose 3 MIU at 12 hours after loading dose, administration of maintenance dose 9 MIU in two divided doses and application of extended interval in renal adjustment dose. However, the information is applicable for non-colistin-heteroresistance A. baumannii with colistin MIC < 1.0 mg/L. As for heteroresistance and strain with colistin MIC > 1.0 mg/L, combination therapy would be the more appropriate treatment strategy.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Colistin/pharmacology*
  17. Teoh HL, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2021;23(2):43-56.
    PMID: 33639080 DOI: 10.1615/IntJMedMushrooms.2021037649
    Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common liver diseases worldwide. Lifestyle modifications through the diet are the mainstay of treatment. Auricularia nigricans is a popular edible mushroom known to possess medicinal properties. Gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis indicated that linoleic acid ethyl ester, butyl 9,12-octadecadienoate, 9,12-octadecadienoic acid, ergosta-5,7,22-trien-3-ol, 2(3,4-dihydroxyphenyl)-7-hydroxy-5-benzene propanoic acid, and 3,30-di-0-methyl ellagic acid were present in the A. nigricans ethyl acetate (EA) fraction. The cytotoxicity assay showed that the EA fraction was noncytotoxic to HepG2 cells at concentrations < 100 μg/mL. In the antihepatic steatosis assay, 50 μg/mL of EA fraction caused a decline in absorbance to 0.20 ± 0.02 compared to palmitic acid (PA)-induced cells (0.24 ± 0.02). Furthermore, cells treated with 50 μg/mL and 25 μg/mL of EA fraction contributed an approximately 1.12-fold and 1.08-fold decrease in lipid accumulation compared to PA-induced cells. Coincubation with PA and 25 μg/mL of EA fraction decreased levels of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 to 140.48 ± 8.12, 91.16 ± 2.40, 184.00 ± 22.68, and 935.88 ± 39.36 pg/mL compared to PA-induced cells. The presence of the EA fraction also suppressed the stress-activated protein kinase/Jun amino-terminal kinase, p-38 mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription 3 signaling pathways. In conclusion, these findings suggest that the A. nigricans EA fraction demonstrates antisteatotic effects involving antioxidant capacity, hypolipidemic effects, and anti-inflammatory capacity in the PA-induced NAFLD pathological cell model.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology; Antioxidants/pharmacology
  18. Chai WF, Tang KS
    J Trace Elem Med Biol, 2021 Jul;66:126742.
    PMID: 33773280 DOI: 10.1016/j.jtemb.2021.126742
    BACKGROUND: Diabetes mellitus (DM) is a non-communicable metabolic disease which is closely related to excessive oxidative stress after constant exposure to high plasma glucose. Although the current antidiabetic medications are effective in lowering blood glucose, these medications do not prevent or reverse the disease progression. Thus, there is a crucial need to explore new therapeutic interventions that could address this shortcoming. As cerium oxide nanoparticles (CONPs) possess antioxidant property, this agent may be used as a treatment option for the management of DM.

    PURPOSE: This review aims to provide a critical evaluation of the pharmacological and antidiabetic effects of CONPs in cell and animal models. The roles of CONPs in attenuating DM complications are also presented in this report.

    METHODS: We conducted a literature search in the PubMed database using the keywords "cerium oxide", "cerous oxide", "ceria", "nanoceria", and "diabetes" from inception to December 2020. The inclusion criteria were primary source articles that investigated the role of CONPs in DM and diabetic complications.

    RESULTS: We identified 47 articles from the initial search. After the thorough screening, only 31 articles were included in this study. We found that CONPs can attenuate parameters that are related to DM and diabetic complications in various animals and cell culture models.

    CONCLUSION: CONPs could potentially be used in the treatment of those with DM and complications caused by the disease.

    Matched MeSH terms: Cerium/pharmacology*; Protective Agents/pharmacology*
  19. Mitra S, Paul S, Roy S, Sutradhar H, Bin Emran T, Nainu F, et al.
    Molecules, 2022 Jan 16;27(2).
    PMID: 35056870 DOI: 10.3390/molecules27020555
    Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
    Matched MeSH terms: Minerals/pharmacology*; Vitamins/pharmacology*
  20. Mah SH, Lian Ee GC, Teh SS, Sukari MA
    Pak J Pharm Sci, 2015 Mar;28(2):425-9.
    PMID: 25730799
    Structure-activity relationships of eleven xanthones were comparatively predicted for four cancer cell lines after the compounds were subjected to antiproliferative assay against B-lymphocyte cells (Raji), colon carcinoma cells (LS174T), human neuroblastoma cells (IMR-32) and skin carcinoma cells (SK-MEL-28). The eleven chemical constituents were obtained naturally from the stem bark of Calophyllum inophyllum and Calophyllum soulattri. Inophinnin (1) and inophinone (2) were isolated from Calophyllum inophyllum while soulattrin (3) and phylattrin (4) were found from Calophyllum soulattri. The other xanthones were from both Calophyllum sp. and they are pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7), 4-hydroxyxanthone (8), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). Compound 3 was found to be the most cytotoxic towards all the cancer cell lines with an IC50 value of 1.25μg/mL while the simplest xanthone, compound 8 was inactive.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Xanthones/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links