Displaying publications 561 - 580 of 3987 in total

Abstract:
Sort:
  1. Md Rajuna, A.S., Norazema, S.
    MyJurnal
    Background : Safe potable water is critical during and post flood. In the pre-flood period, Johore has an excellent, systematic and comprehensive water supply system. More than 98.6% of Johore population received treated water supply from the water treatment plants.
    Methodology : Data collection was performed by conducting additional water sampling at routine sampling stations as well as the flood relief centres, water tankers (lorries) and static water tanks. Water treatment plant outlet and water tanker inlet shall have a minimum level of 2.0 mg/l of residual chlorine so that reticulation, water tanker outlets and static water tanks would have at least 0.5 mg/l as a measure to prevent the incidence of water borne diseases. Sampling was done everyday to monitor water quality at the flood relief centres as well as flood-hit areas. Inspections and surveillance on sanitation were also conducted on latrines, solid waste disposal systems and on the surrounding environment.
    Results : A total of 6,283 water samples had been collected during and post flood. Violations on E. coli, turbidity and residual chlorine were 0.8%, 0.6% and 4.0% respectively with the Kluang district recorded the highest percentages for all the three parameters. A number of 621 wells had been inspected with 378 of them (60.9%) had been chlorinated. In order to ensure environmental cleanliness, 26,815 houses in 708 villages had been visited. Out of them, 2,011 houses (7.5%) were not satisfactory. Sanitation inspections found that 1,778 latrines, 2,719 domestic water sewerage systems and 2,955 solid waste disposal systems were under substandard conditions thus remedial actions had been taken immediately.
    Conclusion : Although the flood disaster was massive with prolonged flooding period, however, an overall quality status on treated water supply was satisfactory whilst sanitary hygiene was under control. Hence, the incidence of communicable disease especially water borne diseases would not progress into serious outbreak, in fact, neither cholera nor typhoid was reported during the Johore flood disaster.
    Matched MeSH terms: Water Supply; Water Purification; Water Quality; Drinking Water; Water Wells
  2. Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA
    Carbohydr Polym, 2016 Oct 20;151:1091-1099.
    PMID: 27474659 DOI: 10.1016/j.carbpol.2016.06.076
    A new poly(methacrylamide) grafted crosslinked chitosan was prepared for removal of lead, Pb(II) ion from aqueous solution. Crosslinked chitosan, in beads form, was grafted with methacrylamide (MAm) using ammonium persulfate (APS) as free radical initiator. Evidence of grafting was determined by comparing FTIR, TGA, SEM and (13)C NMR analyses of chitosan and graft copolymer. The optimal conditions for grafting reaction were as follow: crosslinked chitosan beads (1g), MAm (17.62×10(-1)M), APS (2.63×10(-1)M), reaction time (3h) and temperature (60°C). The modified chitosan bead was then used in laboratory batch experiments to evaluate the removal of Pb(II) ion from water samples. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms. The results revealed that the adsorption of Pb(II) ions onto the beads fitted very well with the Langmuir model with the maximum capacity (qmax) of 250mgg(-1).
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  3. Sharifinia M, Mahmoudifard A, Imanpour Namin J, Ramezanpour Z, Yap CK
    Chemosphere, 2016 Sep;159:584-594.
    PMID: 27343865 DOI: 10.1016/j.chemosphere.2016.06.064
    This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Pollution, Chemical/statistics & numerical data; Water Quality
  4. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Water Sci Technol, 2017 Apr;75(7-8):1684-1692.
    PMID: 28402310 DOI: 10.2166/wst.2017.043
    Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
    Matched MeSH terms: Water Purification/instrumentation; Water Purification/methods*; Waste Water/chemistry
  5. Erabee IK, Ahsan A, Jose B, Arunkumar T, Sathyamurthy R, Idrus S, et al.
    PMID: 28471297 DOI: 10.1080/10934529.2017.1303309
    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Pollutants, Chemical/chemistry; Water Purification/methods*
  6. Sekarajasekaran IA
    PMID: 538513
    Development of a human community are not without changes in its environment. Such changes result in either beneficial or adverse effects on human health. In Malaysia, in the wake of the New Economic Policy aimed at the redressing of the poor population and income distribution, development of the nation has brought about various changes in the environment. Some of these changes have elevated basic public health problems, while others, particularly new agricultural practices and industrialisation programmes with urbanisation trends, have brought a new set of problems due to water pollution and sanitation. Various measures are being taken to protect and to improve the environment so that progress can be realised with minimum adverse effects. This also calls for assistance from international sources, in terms of expertise, training and funds.
    Matched MeSH terms: Water Pollutants, Chemical/adverse effects; Water Pollution*; Water Supply
  7. Abu-Alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M
    Sci Total Environ, 2018 Feb 15;615:972-989.
    PMID: 29751448 DOI: 10.1016/j.scitotenv.2017.09.320
    A comprehensive study was conducted to identify the salinization origins and the major hydrogeochemical processes controlling the salinization and deterioration of the Gaza coastal aquifer system through a combination approaches of statistical and geostatistical techniques, and detailed hydrogeochemical assessments. These analyses were applied on ten physicochemical variables for 219 wells using STATA/SE12 and Surfer softwares. Geostatistical analysis of the groundwater salinity showed that seawater intrusion along the coastline, and saltwater up-coning inland highly influenced the groundwater salinity of the study area. The hierarchical cluster analysis (HCA) technique yielded seven distinct hydrogeochemical signature clusters; (C1&C2: Eocene brackish water invasion, C3 saltwater up-coning, C4 human inputs, C5 seawater intrusion, C6 & C7 rainfall and mixing inputs). Box plot shows a wide variation of most of the ions while Chadha's plot elucidates the predominance of Na-Cl (71.6%) and Ca/Mg-Cl (25%) water types. It is found that, the highest and the lowest levels of salinization and the highest level of nitrate pollution were recorded in the northern area. This result reflects the sensitivity of this area to the human activities and/or natural actions. Around 90.4% of the wells are nitrate polluted. The main source of nitrate pollution is the sewage inputs while the farming inputs are very limited and restricted mostly in the sensitive northern area. Among the hydrogeochemical processes, ion exchange process was the most effective process all over the study area. Carbonate dissolution was common in the study area with the highest level in clusters 6, 7, 4 and 2 in the north while Gypsum dissolution was significant only in cluster 1 in the south and limited in the other clusters. This integrated multi-techniques research should be of benefit for effective utilization and management of the Gaza coastal aquifer system as well as for future work in other similar aquifers systems.
    Matched MeSH terms: Water Pollutants, Chemical/analysis; Water Supply/statistics & numerical data*; Water Wells
  8. Azizi S, Mahdavi Shahri M, Mohamad R
    Molecules, 2017 Jun 08;22(6).
    PMID: 28594362 DOI: 10.3390/molecules22060831
    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.
    Matched MeSH terms: Water/chemistry; Water Pollutants, Chemical/toxicity; Water Pollutants, Chemical/chemistry*
  9. Mojiri A, Ahmad Z, Tajuddin RM, Arshad MF, Gholami A
    Environ Monit Assess, 2017 Jul;189(7):337.
    PMID: 28612336 DOI: 10.1007/s10661-017-6052-x
    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Pollution; Water Purification/methods
  10. Mamat NA, See HH
    J Chromatogr A, 2017 Jun 30;1504:9-16.
    PMID: 28499598 DOI: 10.1016/j.chroma.2017.05.005
    A new electric-field driven extraction approach based on the integration of a bubbleless electrode into the electromembrane extraction (EME) across hollow polymer inclusion membranes (HPIMs) was demonstrated for the first time. The bubbleless electrode was prepared based on an in-situ synthesised polyacrylamide within a fused silica capillary. The electrode functions as a salt bridge, which conducts the electrical current between the acceptor phase in the lumen of the HPIM and the acceptor solution in the reservoir connected to a high voltage supply through a platinum electrode. Two types of HPIMs were employed, which consisted of desired proportions of cellulose acetate as base polymer, tris(2-ethylhexyl)phosphate as plasticizer, and di-(2-ethylhexyl)phosphoric acid as anionic carrier or Aliquat 336 as cationic carrier, respectively. The EME strategy was evaluated for the simultaneous determination of cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides present in the river water, respectively. The analysis was carried out using capillary electrophoresis coupled with UV and contactless conductivity detection. Under the optimised conditions, enrichment factors in the range of 152-185-fold were obtained from 4mL of river water sample with a 20min extraction time and an applied voltage of 3000V. The proposed method provided good linearity with correlation coefficients ranging from 0.9982 to 0.9997 over a concentration range of 1-1000μg/L. The detection limits of the method for the herbicides were in the range of 0.3-0.4μg/L, with relative standard deviations of between 4.8% and 8.5%. The relative recoveries obtained when analysing the spiked river water ranged from 99.1% to 100%. A comparison was also made between the newly developed approach with the conventional EME setup by placing the platinum electrode directly in the lumen of the HPIMs.
    Matched MeSH terms: Fresh Water/chemistry; Water Pollutants, Chemical/isolation & purification*; Water Pollutants, Chemical/chemistry
  11. Ghani ZA, Yusoff MS, Zaman NQ, Zamri MFMA, Andas J
    Waste Manag, 2017 Apr;62:177-187.
    PMID: 28274782 DOI: 10.1016/j.wasman.2017.02.026
    This study determined the optimum conditions for preparation and adsorptive treatment of landfill leachate from banana pseudo-stem based activated carbon. Response surface methodology (RSM) based on Box-Behnken was applied to optimize the combination effect of three important reaction variables, i.e. activation temperature (°C), activation time and impregnation ratio (IR). The reaction was performed via a single step activation with ZnCl2 in a closed activation system. A series of 17 individual experiments were conducted and the results showed that the RSM based on BBD is very applicable for adsorptive removal of pollutants from landfill leachate treatment. The optimum conditions obtained by Design of Experiments (DOE) was at 761°C activation temperature, 87min activation time and 4.5g/g impregnation ratio with product yield (27%), iodine number (1101mg/g), color removal (91.2%) and COD removal (83.0%).
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Pollutants, Chemical/chemistry; Water Purification/methods
  12. Goh SG, Bayen S, Burger D, Kelly BC, Han P, Babovic V, et al.
    Mar Pollut Bull, 2017 Jan 15;114(1):627-634.
    PMID: 27712861 DOI: 10.1016/j.marpolbul.2016.09.036
    Water quality in Singapore's coastal area was evaluated with microbial indicators, pathogenic vibrios, chemical tracers and physico-chemical parameters. Sampling sites were grouped into two clusters (coastal sites at (i) northern and (ii) southern part of Singapore). The coastal sites located at northern part of Singapore along the Johor Straits exhibited greater pollution. Principal component analysis revealed that sampling sites at Johor Straits have greater loading on carbamazepine, while turbidity poses greater influence on sampling sites at Singapore Straits. Detection of pathogenic vibrios was also more prominent at Johor Straits than the Singapore Straits. This study examined the spatial variations in Singapore's coastal water quality and provided the baseline information for health risk assessment and future pollution management.
    Matched MeSH terms: Water Microbiology/standards*; Water Pollutants, Chemical/analysis*; Water Quality
  13. Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abdeldin I, Bani Khalaf R
    J Water Health, 2019 Dec;17(6):957-970.
    PMID: 31850902 DOI: 10.2166/wh.2019.158
    The current study was conducted to measure the activity concentration of the gross alpha and beta in 87 groundwater samples collected from the productive aquifers that constitute a major source of groundwater to evaluate the annual effective dose and the corresponding health impact on the population and to investigate the quality of groundwater in Jordan. The mean activity concentration of gross alpha and beta in groundwater ranges from 0.26 ± 0.03 to 3.58 ± 0.55 Bq L-1 and from 0.51 ± 0.07 to 3.43 ± 0.46 Bq L-1, respectively. A very strong relationship was found between gross alpha and beta activity concentrations. The annual effective dose for alpha and beta was found in the range of 0.32-2.40 mSv with a mean value of 0.89 mSv, which is nine times higher than the World Health Organization (WHO) recommended limit and one and half times higher than the national regulation limit. The mean lifetime risk was found to be 45.47 × 10-4 higher than the Jordanian estimated upper-bound lifetime risk of 25 × 10-4. The data obtained in the study would be the baseline for further epidemiological studies on health effects related to the exposure to natural radioactivity in Jordan.
    Matched MeSH terms: Water Pollutants, Radioactive/analysis*; Water Pollutants, Radioactive/standards; Drinking Water/analysis*
  14. Abd Manan TSB, Khan T, Wan Mohtar WHM, Beddu S, Mohd Kamal NL, Yavari S, et al.
    Data Brief, 2020 Jun;30:105518.
    PMID: 32382595 DOI: 10.1016/j.dib.2020.105518
    Perak River basin is in Perak state of Peninsular Malaysia. In this research, the river stretch serves as water intake for domestic, agricultural and industrial purposes in Perak Tengah, Hilir Perak and Manjung regions. It is located in mixed use area whilst exposing the river to anthropogenic elements. The sampling locations were conducted at selected points of Perak River namely Tanjung Belanja Bridge (TBB), Water Treatment Plant Parit (WTPP), Parit Town discharge (PTD), Water Treatment Plant Senin (WTPS) and Water Treatment Plant Kepayang (WTPK). The existence of aromatic hydrocarbons in freshwater samples was pre-assessed via qualification analysis; specific ultraviolet absorbance (SUVA254) method at 254 nm of wavelength. The SUVA dataset were 48.38 L/mg-m (TBB), 50.54 L/mg-m (WTPP), 8.05 L/mg-m (PTD), 85.75 L/mg-m (WTPS) and 217.39 L/mg-m (WTPK). The SUVA254 values of fresh water at the river basin have exceeded the water quality standards value equivalent to 2.0 L/mg-m permitted by the Environmental Protection Agency of United States. The exceeding values were an indication of a large portion of aromatic compounds in the water. Qualification analyses evident the existence of water pollutants at treacherous concentrations for public health in freshwater samples of Perak River basin. Thus, this research has presented important findings towards further research and countermeasure for a better alternative of water treatment in Malaysia.
    Matched MeSH terms: Fresh Water; Water; Water Pollutants; Water Purification; Water Quality
  15. Sadiq AC, Olasupo A, Ngah WSW, Rahim NY, Suah FBM
    Int J Biol Macromol, 2021 Nov 30;191:1151-1163.
    PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179
    The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry; Water Purification/methods*; Waste Water
  16. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Water Pollutants, Chemical/analysis; Water Pollutants, Chemical/toxicity*; Waste Water/chemistry
  17. Fiyadh SS, AlSaadi MA, AlOmar MK, Fayaed SS, Hama AR, Bee S, et al.
    Water Sci Technol, 2017 Nov;76(9-10):2413-2426.
    PMID: 29144299 DOI: 10.2166/wst.2017.393
    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb2+. Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R2) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R2 of 0.9956 with MSE of 1.66 × 10-4. The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/instrumentation; Water Purification/methods*
  18. Koki IB, Low KH, Juahir H, Abdul Zali M, Azid A, Zain SM
    Chemosphere, 2018 Mar;195:641-652.
    PMID: 29287272 DOI: 10.1016/j.chemosphere.2017.12.112
    Evaluation of health risks due to heavy metals exposure via drinking water from ex-mining ponds in Klang Valley and Melaka has been conducted. Measurements of As, Cd, Pb, Mn, Fe, Na, Mg, Ca, and dissolved oxygen, pH, electrical conductivity, total dissolved solid, ammoniacal nitrogen, total suspended solid, biological oxygen demand were collected from 12 ex-mining ponds and 9 non-ex-mining lakes. Exploratory analysis identified As, Cd, and Pb as the most representative water quality parameters in the studied areas. The metal exposures were simulated using Monte Carlo methods and the associated health risks were estimated at 95th and 99th percentile. The results revealed that As was the major risk factor which might have originated from the previous mining activity. For Klang Valley, adults that ingested water from those ponds are at both non-carcinogenic and carcinogenic risks, while children are vulnerable to non-carcinogenic risk; for Melaka, only children are vulnerable to As complications. However, dermal exposure showed no potential health consequences on both adult and children groups.
    Matched MeSH terms: Water/chemistry; Water Pollutants, Chemical/analysis*; Water Quality
  19. Lim AP, Zulkeflee Z, Aris AZ
    Water Sci Technol, 2016 Oct;74(7):1577-1584.
    PMID: 27763337
    Dead calcareous skeletons (CSs) as low-cost adsorbents were studied to remove lead ions (Pb (II)) in an aqueous solution. Factors influencing the efficiency of CSs were evaluated by adsorbent size, contact time, initial concentration, dosage concentration and pH. The optimum CS size for removal of Pb (II) was 710 μm at an equilibrium time of 720 min. The best dosage of CS was 10 g/L for a 99% removal efficiency without pH adjustment. Pb (II) ions were effectively removed in the initial pH of the metal solution. CS was able to remove a high concentration (100 mg/L) of Pb (II) at a removal efficiency of 99.92% and at an adsorption capacity of 13.06 mg/g. Our results demonstrated the potential of CS as a metal adsorbent in the aqueous phase with a high-removal efficiency and distinct physical characteristics.
    Matched MeSH terms: Water; Water Pollutants, Chemical/chemistry*; Water Purification/methods
  20. Kong H, Saman N, Tee PN, Cheu SC, Song ST, Johari K, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11140-11152.
    PMID: 30796666 DOI: 10.1007/s11356-019-04248-5
    The aim of this work is to convert agroforestry residue to a novel adsorbent (M-1CTA-SDS-BT) used for adsorptive benzene sequestration from aqueous solution. In this study, the anionic surfactant-coated-cationized banana trunk was synthesized and characterized for batch adsorption of benzene from aqueous solution. The surface morphology, surface chemistry, surface area, and pore properties of the synthesized adsorbents were examined. It was proven that surface cationization successfully increased the benzene adsorption capacity of sodium dodecyl sulfate-coated adsorbents. The Langmuir isotherm model satisfactorily described the equilibrium adsorption data. The maximum benzene adsorption capacity (qmax) of 468.19 μmol/g was attained. The kinetic data followed the pseudo-second-order kinetic model in which the rate-limiting step was proven to be the film diffusion. The batch-adsorbent regeneration results indicated that the M-1CTA-SDS-BT could withstand at least five adsorption/desorption cycles without drastic adsorption capacity reduction. The findings demonstrated the adsorptive potential of agroforestry-based adsorbent as a natural and cheap material for benzene removal from contaminated water.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/instrumentation; Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links