Displaying publications 41 - 60 of 573 in total

Abstract:
Sort:
  1. Afiqah RN, Paital B, Kumar S, Majeed AB, Tripathy M
    J. Mol. Recognit., 2016 11;29(11):544-554.
    PMID: 27406464 DOI: 10.1002/jmr.2554
    The inhibitory role of AgNO3 on glucose-mediated respiration in Escherichia coli has been investigated as a function of pH and temperature using Clark-type electrode, environmental scanning electron microscopy, and computational tools. In the given concentration of bacterial suspension (1 × 10(8)  CFU/ml), E. coli showed an increasing nonlinear trend of tetra-phasic respiration between 1-133 μM glucose concentration within 20 min. The glucose concentrations above 133 μM did not result any linear increment in respiration but rather showed a partial inhibition at higher glucose concentrations (266-1066 μM). In the presence of glucose, AgNO3 caused a concentration-dependent (47-1960 μM) inhibition of the respiration rate within 4 min of its addition. The respiration rate was the highest at pH 7-8 and then was decreased on either side of this pH range. The inhibitory action of AgNO3 upon bacterial respiration was the highest at 37 °C. The observations of the respiration data were well supported by the altered bacterial morphology as observed in electron microscopic study. Docking study indicated the AgNO3 binding to different amino acids of all respiratory complex enzymes in E. coli and thereby explaining its interference with the respiratory chain. Copyright © 2016 John Wiley & Sons, Ltd.
  2. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  3. Dixon JM, Weerahewa J, Hellin J, Rola-Rubzen MF, Huang J, Kumar S, et al.
    Agric Syst, 2021 Oct;193:103168.
    PMID: 36284566 DOI: 10.1016/j.agsy.2021.103168
    CONTEXT: The COVID-19 pandemic has been affecting health and economies across the world, although the nature of direct and indirect effects on Asian agrifood systems and food security has not yet been well understood.

    OBJECTIVES: This paper assesses the initial responses of major farming and food systems to COVID-19 in 25 Asian countries, and considers the implications for resilience, food and nutrition security and recovery policies by the governments.

    METHODS: A conceptual systems model was specified including key pathways linking the direct and indirect effects of COVID-19 to the resilience and performance of the four principal Asian farming and food systems, viz, lowland rice based; irrigated wheat based; hill mixed; and dryland mixed systems. Based on this framework, a systematic survey of 2504 key informants (4% policy makers, 6% researchers or University staff, 6% extension workers, 65% farmers, and 19% others) in 20 Asian countries was conducted and the results assessed and analysed.

    RESULTS AND CONCLUSION: The principal Asian farming and food systems were moderately resilient to COVID-19, reinforced by government policies in many countries that prioritized food availability and affordability. Rural livelihoods and food security were affected primarily because of disruptions to local labour markets (especially for off-farm work), farm produce markets (notably for perishable foods) and input supply chains (i.e., seeds and fertilisers). The overall effects on system performance were most severe in the irrigated wheat based system and least severe in the hill mixed system, associated in the latter case with greater resilience and diversification and less dependence on external inputs and long market chains. Farming and food systems' resilience and sustainability are critical considerations for recovery policies and programmes, especially in relation to economic performance that initially recovered more slowly than productivity, natural resources status and social capital. Overall, the resilience of Asian farming and food systems was strong because of inherent systems characteristics reinforced by public policies that prioritized staple food production and distribution as well as complementary welfare programmes. With the substantial risks to plant- and animal-sourced food supplies from future zoonoses and the institutional vulnerabilities revealed by COVID-19, efforts to improve resilience should be central to recovery programmes.

    SIGNIFICANCE: This study was the first Asia-wide systems assessment of the effects of COVID-19 on agriculture and food systems, differentiating the effects of the pandemic across the four principal regional farming and food systems in the region.

  4. Rosenthal VD, Bat-Erdene I, Gupta D, Rajhans P, Myatra SN, Muralidharan S, et al.
    J Vasc Access, 2021 Jan;22(1):34-41.
    PMID: 32406328 DOI: 10.1177/1129729820917259
    BACKGROUND: Short-term peripheral venous catheter-associated bloodstream infection rates have not been systematically studied in Asian countries, and data on peripheral venous catheter-associated bloodstream infections incidence by number of short-term peripheral venous catheter days are not available.

    METHODS: Prospective, surveillance study on peripheral venous catheter-associated bloodstream infections conducted from 1 September 2013 to 31 May 2019 in 262 intensive care units, members of the International Nosocomial Infection Control Consortium, from 78 hospitals in 32 cities of 8 countries in the South-East Asia Region: China, India, Malaysia, Mongolia, Nepal, Philippines, Thailand, and Vietnam. For this research, we applied definition and criteria of the CDC NHSN, methodology of the INICC, and software named INICC Surveillance Online System.

    RESULTS: We followed 83,295 intensive care unit patients for 369,371 bed-days and 376,492 peripheral venous catheter-days. We identified 999 peripheral venous catheter-associated bloodstream infections, amounting to a rate of 2.65/1000 peripheral venous catheter-days. Mortality in patients with peripheral venous catheter but without peripheral venous catheter-associated bloodstream infections was 4.53% and 12.21% in patients with peripheral venous catheter-associated bloodstream infections. The mean length of stay in patients with peripheral venous catheter but without peripheral venous catheter-associated bloodstream infections was 4.40 days and 7.11 days in patients with peripheral venous catheter and peripheral venous catheter-associated bloodstream infections. The microorganism profile showed 67.1% were Gram-negative bacteria: Escherichia coli (22.9%), Klebsiella spp (10.7%), Pseudomonas aeruginosa (5.3%), Enterobacter spp. (4.5%), and others (23.7%). The predominant Gram-positive bacteria were Staphylococcus aureus (11.4%).

    CONCLUSIONS: Infection prevention programs must be implemented to reduce the incidence of peripheral venous catheter-associated bloodstream infections.

  5. Sharani, R., Kumar, S., Thilakavathy, K.
    MyJurnal
    Introduction: Lipoprotein L21 (LipL21) has been used as a molecular marker for leptospirosis as it is highly expressed in pathogenic Leptospira species during infection. However, it lacks specificity due to the newly emerging pathogenic serovars. Therefore, interrogation of LipL21 in all serovars needed to understand the pathogenesis of leptospirosis to enable early diagnosis. This study was carried out to determine the suitability of LipL21 as a molecular marker for leptospirosis by identifying the conserved sequences of LipL21 mRNA and amino acids in different Leptospira strains. Methods: Location of LipL21 conserved regions in 15 pathogenic and 2 non-pathogenic strains of five Leptospira species, were identified using bioinformatics database and tools such as National Center of Biotechnology, Rapid Annotation Subsystem Technology blast search, Muscle program and Jalview software. Results: Multiple sequence alignment analysis revealed that two conserved regions were observed in 10 pathogenic Leptospira strains from nucleotide position 29 to 53 and 100 to 137, however conserved amino acid sequences (111-149 and 155-192) were found in all the pathogenic strains. The distinction between gene and amino acid results is due to the degenerate genetic code feature. Conclusion: In conclusion, this study suggests that LipL21 protein has a potential to be used as a diagnostic marker for detection of Leptospira pathogens compared to LipL21 mRNA.
  6. Sun Z, Xiong C, Teh SW, Lim JCW, Kumar S, Thilakavathy K
    PMID: 31867287 DOI: 10.3389/fcimb.2019.00412
    Pancreatic cancer is a highly lethal disease, and most patients remain asymptomatic until the disease enters advanced stages. There is lack of knowledge in the pathogenesis, effective prevention and early diagnosis of pancreatic cancer. Recently, bacteria were found in pancreatic tissue that has been considered sterile before. The distribution of flora in pancreatic cancer tissue was reported to be different from normal pancreatic tissue. These abnormally distributed bacteria may be the risk factors for inducing pancreatic cancer. Therefore, studies on combined effect of multi-bacterial and multi-virulence factors may add to the knowledge of pancreatic cancer pathogenesis and aid in designing new preventive and therapeutic strategies. In this review, we outlined three oral bacteria associated with pancreatic cancer and their virulence factors linked with cancer.
  7. Loh LC, Chan LY, Tan RY, Govindaraju S, Ratnavelu K, Kumar S, et al.
    Asia Pac J Public Health, 2006;18(1):69-71.
    PMID: 16629441
    The prognosis of lung cancer remains poor with overall five year survival figures varying between five and 10% worldwide, However, it has been shown that surgery in patients with early stage disease in non-small cell lung cancer can achieve five year survival rates up to 80%, suggesting that early or delay diagnosis can influence prognosis. Nevertheless, studies addressing this have been inconclusive and mostly derived from Western countries.
  8. Loh LC, Chan LY, Tan RY, Govindaraju S, Ratnavelu K, Kumar S, et al.
    Malays J Med Sci, 2006 Jan;13(1):37-42.
    PMID: 22589589 MyJurnal
    While evidence indicates that early stage disease has better prognosis, the effect of delay in presentation and treatment of patients with non-small cell lung cancer (NSCLC) on survival is debatable. A retrospective study of 122 Malaysian patients with NSCLC was performed to examine the presentation and treatment delay, and its relation with patient survival. Median (25-75% IQR) interval between onset of symptoms and first hospital consultation (patient delay) and between first hospital consultation and treatment or decision to treat (doctor delay) were 2 (1.0- 5.0) and 1.1 (0.6-2.4) months respectively. The median survival rates in patient delay of <1, 1 to 3, and >3 months were 4.1 (9.9-1.7), 5.1 (10.9-3.2) and 5.7 (12.3-2.1) months respectively (log rank p=0.648), while in doctor delay, <30, 30-60, >60 days, the rates were 4.1 (10.8-1.8), 7.6 (13.7-3.2) and 5.3 (16.0-3.0) months respectively (p=0.557). Most patients presented and were treated in a relatively short time, and delays did not appear to influence survival. This Asian data is consistent with those from Western population, reiterating the need for public health measures that can identify disease early..
  9. Loh LC, Tan RY, Chan LY, Govindaraju S, Ratnavelu K, Kumar S, et al.
    Malays J Med Sci, 2006 Jul;13(2):24-9.
    PMID: 22589601 MyJurnal
    In Malaysia, many patients opted out of cancer-specific treatment for various reasons. This study was undertaken to investigate the survival rate of patients with stages I to III non-small cell lung cancer (NSCLC) who opted out of treatment, compared with those who accepted treatment. Case records of 119 patients diagnosed with NSCLC between 1996 and 2003 in two urban-based hospitals were retrospectively examined. Survival status was ascertained from follow-up medical clinic records or telephone contact with patients or their next-of-kin. Median (25-75% IQR) survival rate for 79 patients who accepted and 22 patients who opted out of treatment, were 8.6 (16.0-3.7) and 2.2 (3.5-0.8) months respectively [log rank p< 0.001, Kaplan-Meier survival analysis]. Except for proportionately more patients with large cell carcinoma who declined treatment, there was no significant difference between the two groups in relation with age, gender, ethnicity, tumour stage, and time delays between symptom onset and treatment or decision-to-treat. We concluded that there was a small but significant survival benefit in accepting cancer-specific treatment. The findings imply that there is no effective alternative therapy to cancer-specific treatment in improving survival. However, overall prognosis for patients with NSCLC remains dismal.
  10. WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al.
    N Engl J Med, 2021 Feb 11;384(6):497-511.
    PMID: 33264556 DOI: 10.1056/NEJMoa2023184
    BACKGROUND: World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19).

    METHODS: We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry.

    RESULTS: At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration.

    CONCLUSIONS: These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.).

  11. Samrot AV, Sean TC, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, et al.
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):3088-3105.
    PMID: 33098896 DOI: 10.1016/j.ijbiomac.2020.10.104
    Chitosan, collagen, gelatin, polylactic acid and polyhydroxyalkanoates are notable examples of biopolymers, which are essentially bio-derived polymers produced by living cells. With the right techniques, these biological macromolecules can be exploited for nanotechnological advents, including for the fabrication of nanocarriers. In the world of nanotechnology, it is highly essential (and optimal) for nanocarriers to be biocompatible, biodegradable and non-toxic for safe in vivo applications, including for drug delivery, cancer immunotherapy, tissue engineering, gene delivery, photodynamic therapy and many more. The recent advancements in understanding nanotechnology and the physicochemical properties of biopolymers allows us to modify biological macromolecules and use them in a multitude of fields, most notably for clinical and therapeutic applications. By utilizing chitosan, collagen, gelatin, polylactic acid, polyhydroxyalkanoates and various other biopolymers as synthesis ingredients, the 'optimal' properties of a nanocarrier can easily be attained. With emphasis on the aforementioned biological macromolecules, this review presents the various biopolymers utilized for nanocarrier synthesis along with their specific synthetization methods. We further discussed on the characterization techniques and related applications for the synthesized nanocarriers.
  12. Mok PL, Koh AE, Farhana A, Alsrhani A, Alam MK, Suresh Kumar S
    Saudi J Biol Sci, 2021 Apr;28(4):2502-2509.
    PMID: 33551661 DOI: 10.1016/j.sjbs.2021.01.051
    COVID-19 is a rapidly emerging infectious disease caused by the SARS-CoV-2 virus currently spreading throughout the world. To date, there are no specific drugs formulated for it, and researchers around the globe are racing against the clock to investigate potential drug candidates. The repurposing of existing drugs in the market represents an effective and economical strategy commonly utilized in such investigations. In this study, we used a multiple-sequence alignment approach for preliminary screening of commercially-available drugs on SARS-CoV sequences from the Kingdom of Saudi Arabia (KSA) isolates. The viral genomic sequences from KSA isolates were obtained from GISAID, an open access repository housing a wide variety of epidemic and pandemic virus data. A phylogenetic analysis of the present 164 sequences from the KSA provinces was carried out using the MEGA X software, which displayed high similarity (around 98%). The sequence was then analyzed using the VIGOR4 genome annotator to construct its genomic structure. Screening of existing drugs was carried out by mining data based on viral gene expressions from the ZINC database. A total of 73 hits were generated. The viral target orthologs were mapped to the SARS-CoV-2 KSA isolate sequence by multiple sequence alignment using CLUSTAL OMEGA, and a list of 29 orthologs with purchasable drug information was generated. The results showed that the SARS CoV replicase polyprotein 1a had the highest sequence similarity at 79.91%. Through ZINC data mining, tanshinones were found to have high binding affinities to this target. These compounds could be ideal candidates for SARS-CoV-2. Other matches ranged between 27 and 52%. The results of this study would serve as a significant endeavor towards drug discovery that would increase our chances of finding an effective treatment or prevention against COVID19.
  13. Boubaker S, Goodell JW, Kumar S, Sureka R
    Int Rev Financ Anal, 2023 Jan;85:102458.
    PMID: 36439331 DOI: 10.1016/j.irfa.2022.102458
    COVID-19 has posed unprecedented challenges to global finances because of its unparalleled global scope, with both concomitant shocks as well as the likely altering of risk assessments and forecasts for the foreseeable future. As the effects of COVID-19 on financial markets and institutions have been widely addressed by various literature, we systematically synthesize this literature. Through a comprehensive search process, we extract and review 818 articles. Appling bibliometric methods, we explore the trends among various research constituents involved in the field. Using multi-dimensional scaling, we identify the intellectual structure of research in the domain and outline four distinct themes. We also identify the evolution and shifts in research within the short span of three years since the inception of COVID-19. Through detailed content analysis, various future research directions are proposed.
  14. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G
    J Med Virol, 2022 Apr;94(4):1641-1649.
    PMID: 34914115 DOI: 10.1002/jmv.27526
    Emerging severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, especially those of concern, may have an impact on the virus's transmissibility and pathogenicity, as well as diagnostic equipment performance and vaccine effectiveness. Even though the SARS-CoV-2 Delta variant (B.1.617.2) emerged during India's second wave of infections, Delta variants have grown dominant internationally and are still evolving. On November 26, 2021, World Health Organization identified the variant B.1.1.529 as a variant of concern, naming it Omicron, based on evidence that Omicron contains numerous mutations that may influence its behavior. However, the mode of transmission and severity of the Omicron variant remains unknown. We used computational studies to examine the Delta and Omicron variants in this study and found that the Omicron variant had a higher affinity for human angiotensin-converting enzyme 2 (ACE2) than the Delta variant due to a significant number of mutations in the SARS-CoV-2 receptor-binding domain (RBD), indicating a higher potential for transmission. Based on docking studies, the Q493R, N501Y, S371L, S373P, S375F, Q498R, and T478K mutations contribute significantly to high binding affinity with human ACE2. In comparison to the Delta variant, both the entire spike protein and the RBD in Omicron include a high proportion of hydrophobic amino acids such as leucine and phenylalanine. These amino acids are located within the protein's core and are required for structural stability. We observed a disorder-order transition in the Omicron variant between spike protein RBD regions 468-473, and it may be significant in the influence of disordered residues/regions on spike protein stability and binding to ACE2. A future study might investigate the epidemiological and biological consequences of the Omicron variant.
  15. Kumar S, Karuppanan K, Subramaniam G
    J Med Virol, 2022 Oct;94(10):4780-4791.
    PMID: 35680610 DOI: 10.1002/jmv.27927
    The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread throughout the world. We used computational tools to assess the spike infectivity, transmission, and pathogenicity of Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) in this study. BA.1 has 39 mutations, BA.1.1 has 40 mutations, BA.2 has 31 mutations, and BA.3 has 34 mutations, with 21 shared mutations between all. We observed 11 common mutations in Omicron's receptor-binding domain (RBD) and sub-variants. In pathogenicity analysis, the Y505H, N786K, T95I, N211I, N856K, and V213R mutations in omicron and sub-variants are predicted to be deleterious. Due to the major effect of the mutations characterizing in the RBD, we found that Omicron and sub-variants had a higher positive electrostatic surface potential. This could increase interaction between RBD and negative electrostatic surface potential human angiotensin-converting enzyme 2 (hACE2). Omicron and sub-variants had a higher affinity for hACE2 and the potential for increased transmission when compared to the wild-type (WT). Negative electrostatic potential of N-terminal domain (NTD) of the spike protein value indicates that the Omicron variant binds receptors less efficiently than the WT. Given that at least one receptor is highly expressed in lung and bronchial cells, the electrostatic potential of NTD negative value could be one of the factors contributing to why the Omicron variant is thought to be less harmful to the lower respiratory tract. Among Omicron sub-lineages, BA.2 and BA.3 have a higher transmission potential than BA.1 and BA.1.1. We predicted that mutated residues in BA.1.1 (K478), BA.2 (R400, R490, and R495), and BA.3 (R397 and H499) formation of new salt bridges and hydrogen bonds. Omicron and sub-variant mutations at Receptor-binding Motif (RBM) residues such as Q493R, N501Y, Q498, T478K, and Y505H all contribute significantly to binding affinity with human ACE2. Interactions with Omicron variant mutations at residues 493, 496, 498, and 501 seem to restore ACE2 binding effectiveness lost due to other mutations like K417N.
  16. Ginsburg O, Vanderpuye V, Beddoe AM, Bhoo-Pathy N, Bray F, Caduff C, et al.
    Lancet, 2023 Dec 02;402(10417):2113-2166.
    PMID: 37774725 DOI: 10.1016/S0140-6736(23)01701-4
  17. Rampal S, Ganesan T, Sisubalasingam N, Neela VK, Tokgöz MA, Arunasalam A, et al.
    Antibiotics (Basel), 2021 Sep 17;10(9).
    PMID: 34572702 DOI: 10.3390/antibiotics10091120
    BACKGROUND: Necrotizing fasciitis (NF) is a rapidly progressive inflammatory infection of the soft tissue (also known as the fascia) with a secondary necrosis of the subcutaneous tissues, leading to a systemic inflammatory response syndrome (SIRS), shock and eventually death despite the availability of current medical interventions. The clinical management of this condition is associated with a significant amount of morbidity with a high rate of mortality. The prognosis of the disease is affected by multiple factors, which include the virulence of the causative pathogen, local host immunity, local wound factors and empirical antibiotics used. The local trends in the prescription of empirical antibiotics are often based on clinical practice guidelines (CPG), the distribution of the causative microorganism and the cost-effectiveness of the drug. However, there appears to be a paucity of literature on the empirical antibiotic of choice when dealing with necrotizing fasciitis in the clinical setting. This paper will outline common causative microorganisms and current trends of prescription in two tertiary centres in Central Malaysia.

    METHODS: This was a cross-sectional study using retrospective data of patients treated for NF collected from two tertiary care hospitals (Hospital Seremban and Hospital Ampang) in Central Malaysia. A total of 420 NF patients were identified from the five years of retrospective data obtained from the two hospitals.

    RESULTS: The top three empirical antibiotics prescribed are ampicillin + sulbactam (n = 258; 61.4%), clindamycin (n = 55; 13.1%) and ceftazidime (n = 41; 9.8%). The selection of the antibiotic significantly impacts the outcome of NF. The top three causative pathogens for NF are Streptococcus spp. (n = 79; 18.8%), Pseudomonas aeruginosa (n = 61; 14.5%) and Staphylococcus spp. (n = 49; 11.7%). The patients who received antibiotics had 0.779 times lower chances of being amputated. Patients with a lower laboratory risk indicator for necrotizing fasciitis (LRINEC) score had 0.934 times lower chances of being amputated.

    CONCLUSIONS: In this study, the most common empirical antibiotic prescribed was ampicillin + sulbactam followed by clindamycin and ceftazidime. The antibiotics prescribed lower the risk of having an amputation and, hence, a better prognosis of the disease. Broad-spectrum empirical antibiotics following surgical debridement reduce the mortality rate of NF.

  18. Lee SC, Tang IP, Singh A, Kumar SS, Singh S
    Auris Nasus Larynx, 2009 Dec;36(6):709-11.
    PMID: 19304419 DOI: 10.1016/j.anl.2009.02.002
    Choanal stenosis has recently been recognized as a late complication of radiation therapy for nasopharyngeal carcinoma. The management of velopharyngeal stenosis is challenging with high risk of restenosis. We report a case of velopharyngeal stenosis post-radiotherapy and illustrated the use of mitomycin-C to prevent restenosis. Mitomycin-C application has being shown useful adjunct to surgical technique in managing nasopharyngeal stenosis for surgeons.
  19. Ragavan ND, Kumar S, Chye TT, Mahadeva S, Shiaw-Hooi H
    PLoS One, 2015;10(9):e0121173.
    PMID: 26375823 DOI: 10.1371/journal.pone.0121173
    Blastocystis is one of the most common gut parasites found in the intestinal tract of humans and animals. Its' association with IBS is controversial, possibly as a result of irregular shedding of parasites in stool and variation in stool detection. We aimed to screen for Blastocystis in colonic stool aspirate samples in adult patients with and without IBS undergoing colonoscopy for various indications and measure the interleukin levels (IL-8, IL-3 and IL-5). In addition to standard stool culture techniques, polymerase chain reaction (PCR) techniques were employed to detect and subtype Blastocystis. All the serum samples collected were subjected for ELISA studies to measure the interleukin levels (IL-8, IL-3 and IL-5). Among 109 (IBS n = 35 and non-IBS n = 74) adults, direct stool examination and culture of colonic aspirates were initially negative for Blastocystis. However, PCR analysis detected Blastocystis in 6 (17%) IBS and 4 (5.5%) non-IBS patients. In the six positive IBS patients by PCR method, subtype 3 was shown to be the most predominant (3/6: 50%) followed by subtype 4 (2/6; 33.3%) and subtype 5 (1/6; 16.6%). IL-8 levels were significantly elevated in the IBS Blasto group and IBS group (p<0.05) compared to non-IBS and non-IBS Blasto group. The level of IL-3 in were seen to be significantly higher in than IBS Blasto group and IBS group (p<0.05) compared to non-IBS. Meanwhile, the IL-5 levels were significantly higher in IBS Blasto group (p<0.05) compared to non-IBS and non-IBS Blasto group. This study implicates that detecting Blastosystis by PCR method using colonic aspirate samples during colonoscopy, suggests that this may be a better method for sample collection due to the parasite's irregular shedding in Blastocystis-infected stools. Patients with IBS infected with parasite showed an increase in the interleukin levels demonstrate that Blastocystis does have an effect in the immune system.
  20. Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, et al.
    Mar Drugs, 2020 Jun 24;18(6).
    PMID: 32599909 DOI: 10.3390/md18060329
    Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide-peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links