Displaying publications 41 - 60 of 95 in total

Abstract:
Sort:
  1. Hasan S, B Basri H, P Hin L, Stanslas J
    Pak J Med Sci, 2013 May;29(3):859-62.
    PMID: 24353644
    Encephalitis has been included in the causes of optic neuritis, but post encephalitic optic neuritis has been rarely reported. Majority of the cases of optic neuritis are either idiopathic or associated with multiple sclerosis, especially in western countries. This is very important in the Asian population where the incidence and prevalence of multiple sclerosis is not as high as in the Western countries. Although post infectious optic neuritis is more common in children, it can also be found in adults and is usually seen one to three weeks after a symptomatic infective prodrome. Here, we present a case of a 48 year-old-male who developed optic neuritis following viral encephalitis. His first presentation was with severe headache of two weeks duration. Viral encephalitis was diagnosed and treated. The patient presented again three weeks later with right eye pain and other features typical of optic neuritis. Corticosteroid therapy facilitated prompt recovery. Optic neuritis is an uncommon manifestation of encephalitis. It is important that both doctors and patients remain aware of post infectious cause of optic neuritis, which would enable a timely diagnosis and treatment of this reversible cause of vision loss.
  2. Saik AY, Lim YY, Stanslas J, Choo WS
    Biotechnol Lett, 2017 Feb;39(2):297-304.
    PMID: 27812823 DOI: 10.1007/s10529-016-2246-5
    OBJECTIVES: To investigate the lipase-catalyzed acylation of quercetin with oleic acid using Candida antarctica lipase B.

    RESULTS: Three acylated analogues were produced: quercetin 4'-oleate (C33H42O8), quercetin 3',4'-dioleate (C51H74O9) and quercetin 7,3',4'-trioleate (C69H106O10). Their identities were confirmed with UPLC-ESI-MS and (1)H NMR analyses. The effects of temperature, duration and molar ratio of substrates on the bioconversion yields varied across conditions. The regioselectivity of the acylated quercetin analogues was affected by the molar ratio of substrates. TLC showed the acylated analogues had higher lipophilicity (152% increase) compared to quercetin. Partition coefficient (log P) of quercetin 4'-oleate was higher than those of quercetin and oleic acid. Quercetin 4'-oleate was also stable over 28 days of storage.

    CONCLUSIONS: Quercetin oleate esters with enhanced lipophilicity can be produced via lipase-catalyzed reaction using C. antarctica lipase B to be used in topical applications.

  3. Huq AK, Jamal JA, Stanslas J
    PMID: 24834098 DOI: 10.1155/2014/782830
    Persicaria hydropiper (L.) Delarbre, belonging to Polygonaceae family, is a common weed found in most of the temperate countries including Bangladesh, China, Malaysia, and Japan. The plant is also referred to as "marsh pepper" or "smart weed." It appears to be a useful herb with evidence-based medicinal properties. The present work addresses the botanical description, traditional uses, phytochemistry, pharmacology, and toxicology of P. hydropiper. All plant parts have been commonly used in the traditional systems of medicines. Flavonoids are the major group of phytochemical components followed by drimane-type sesquiterpenes and sesquiterpenoids, as well as phenylpropanoids. Different extracts and plant parts showed remarkable pharmacological activities including antioxidant, antibacterial, antifungal, antihelminth, antifeedant, cytotoxicity, anti-inflammatory, antinociceptive, oestrogenicity, antifertility, antiadipogenicity, and neuroprotection. Mutagenicity and acute and subchronic toxicities of the plant were also reported. P. hydropiper has tremendous medicinal properties that could further be investigated for the development of evidence-based herbal products.
  4. Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ
    J Ethnopharmacol, 2021 Oct 28;279:114309.
    PMID: 34119609 DOI: 10.1016/j.jep.2021.114309
    ETHNOPHARMACOLOGICAL RELEVANCE: Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown.

    AIM OF THE STUDY: To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells.

    METHODS: Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively.

    RESULTS: The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS.

    CONCLUSION: The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.

  5. Badamasi IM, Lye MS, Ibrahim N, Stanslas J
    J Neural Transm (Vienna), 2019 06;126(6):711-722.
    PMID: 31111219 DOI: 10.1007/s00702-019-02014-y
    Major depressive disorder (MDD) is primarily hinged on the presence of either low mood and/or anhedonia to previously pleasurable events for a minimum of 2 weeks. Other clinical features that characterize MDD include disturbances in sleep, appetite, concentration and thoughts. The combination of any/both of the primary MDD symptoms as well as any four of the other clinical features has been referred to as MDD. The challenge for replicating gene association findings with phenotypes of MDD as well as its treatment outcome is putatively due to stratification of MDD patients. Likelihood for replication of gene association findings is hypothesized with specificity in symptoms profile (homogenous clusters of symptom/individual symptoms) evaluated. The current review elucidates the genetic factors that have been associated with insomnia symptom of MDD phenotype, insomnia symptom as a constellation of neuro-vegetative cluster of MDD symptom, insomnia symptom of MDD as an individual entity and insomnia feature of treatment outcome. Homozygous CC genotype of 3111T/C, GSK3B-AT/TT genotype of rs33458 and haplotype of TPH1 218A/C were associated with insomnia symptom of MDD. Insomnia symptom of MDD was not resolved in patients with the A/A genotype of HTR2A-rs6311 when treated with SSRI. Homozygous short (SS) genotype-HTTLPR, GG genotype of HTR2A-rs6311 and CC genotype of HTR2A-rs6313 were associated with AD treatment-induced insomnia, while val/met genotype of BDNF-rs6265 and the TT genotype of GSK-3beta-rs5443 reduced it. Dearth of association studies may remain the bane for the identification of robust genetic endophenotypes in line with findings for genotypes of HTR2A-rs6311.
  6. Hasan MS, Basri HB, Hin LP, Stanslas J
    Int J Neurosci, 2013 Mar;123(3):143-54.
    PMID: 23110469 DOI: 10.3109/00207454.2012.744308
    Ischemic heart disease and stroke are the two leading causes of death worldwide. Antiplatelet therapy plays the most significant role in the management of these cardiovascular and cerebrovascular occlusive events to prevent recurrent ischemic attack. Clopidogrel, an antiplatelet drug, is widely prescribed either alone or in combination with aspirin as dual antiplatelet therapy for the prevention of vascular occlusive events. The antiplatelet response to clopidogrel varies widely. Hyporesponders and nonresponders are likely to have adverse cardiovascular events during follow-up. Some drugs, such as proton pump inhibitors (omeprazole), calcium channel blockers, selective serotonin reuptake inhibitors (nefazadone), coumarin derivatives (phenprocoumon), benzodiazepines, sulfonylurea, erythromycin, and itraconazole, decrease the antiplatelet effect of clopidogrel when administered concomitantly. Decreased response to clopidogrel is common among Asians due to genetic polymorphisms associated with clopidogrel resistance, and it is nearly 70% in some of the Asian communities. It is necessary to study Asian populations, because there are a large number of Asians throughout the world due to increased migration. Current guidelines do not make genetic testing or platelet response testing mandatory prior to clopidogrel prescription. Therefore, it is important for clinicians treating Asian patients to keep in mind the interindividual variability in response to clopidogrel when prescribing the drug.
  7. Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, et al.
    Front Physiol, 2021;12:712317.
    PMID: 34721056 DOI: 10.3389/fphys.2021.712317
    Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
  8. Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, et al.
    Curr Neuropharmacol, 2023 Dec 08.
    PMID: 38073104 DOI: 10.2174/1570159X22666231207114346
    The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
  9. Quah SY, Tan MS, Ho KL, Manan NA, Gorfe AA, Deb PK, et al.
    Future Med Chem, 2020 09;12(18):1611-1631.
    PMID: 32892640 DOI: 10.4155/fmc-2020-0104
    Background: Andrographolide and its benzylidene derivatives, SRJ09 and SRJ23, potentially bind oncogenic K-Ras to exert anticancer activity. Their molecular interactions with K-Ras oncoproteins that lead to effective biological activity are of major interest. Methods & results: In silico docking and molecular dynamics simulation were performed using Glide and Desmond, respectively; while saturation transfer difference NMR was performed using GDP-bound K-RasG12V. SRJ23 was found to bind strongly and selectively to K-RasG12V, by anchoring to a binding pocket (namely p2) principally via hydrogen bond and hydrophobic interactions. The saturation transfer difference NMR analysis revealed the proximity of protons of functional moieties in SRJ23 to K-RasG12V, suggesting positive binding. Conclusion: SRJ23 binds strongly and interacts stably with K-RasG12V to exhibit its inhibitory activity.
  10. Wong CC, Periasamy N, Sagineedu SR, Sidik S, Sumon SH, Loadman P, et al.
    Invest New Drugs, 2014 Oct;32(5):806-14.
    PMID: 24875131 DOI: 10.1007/s10637-014-0105-6
    Limited tumor penetrability of anti-cancer drugs is recognized as one of the major factors that lead to poor anti-tumor activity. SRJ09 (3,19-(2-bromobenzylidene) andrographolide) has been identified as a lead anti-cancer agent for colon cancer. Recently, this compound was shown by us to be a mutant K-Ras binder. In this present study, the penetrability of SRJ09 through the DLD-1 colon cancer multicell layer (MCL) was evaluated. The amount of SRJ09 that penetrated through the MCL was quantitated by utilizing high performance liquid chromatography (HPLC). Histopathological staining was used to visualize the morphology of MCL. A chemosensitivity assay was performed to assess the anti-cancer activity of SRJ09 in DLD-1 cells. SRJ09 was able to penetrate through DLD-1 MCL and is inversely proportional with the MCL thickness. The flow rates for SRJ09 through MCL were 0.90 ± 0.20 μM/min/cm(2) and 0.56 ± 0.06 μM/min/cm(2) for days 1 and 5, respectively, which are better than doxorubicin. Histopathological examination revealed that the integrity of the DLD-1 MCL was retained and no visible damage was inflicted on the cell membrane, confirming the penetration of SRJ09 was by diffusion. Short term exposure (1 h) in DLD-1 cells demonstrated SRJ09 had IC50 of 41 μM which was approximately 4-folds lower than andrographolide, the parent compound of SRJ09. In conclusion, SRJ09 successfully penetrated through DLD-1 MCL by diffusion and emerged as a potential candidate to be developed as a clinically viable anti-colon cancer drug.
  11. Hawariah A, Stanslas J
    Anticancer Res, 1998 Nov-Dec;18(6A):4383-6.
    PMID: 9891496
    Previous studies have shown that a styrylpyrone derivative (SPD) from a local tropical plant had antiprogestin and antiestrogenic effects in early pregnant mice models (Azimahtol et al. 1991). Antiprogestins and antiestrogens can be exploited as a therapeutic approach to breast cancer treatment and thus the antitumor activity of SPD was tested in three different human breast cancer cell lines that is: MCF- 7, T47D and MDA-MB-231, employing, the antiproliferative assay of Lin and Hwang (1991) slightly modified. SPD (10(-10) - 10(-6) M) exhibited strong antiproliferative activity in estrogen and progestin-dependent MCF-7 cells (EC50 = 2.24 x 10(-7) M) and in hormone insensitive MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but caused only partial inhibition of the estrogen- insensitive T47D cells (EC50 = 1.58 x 10(-6) M). However, tamoxifen showed strong inhibition of MCF-7 cells (EC50 = 1.41 x 10(-6) M) and to a lesser extent the T47D cells (EC50 = 2.5 x 10(-6) M) but did not affect the MDA-MB-231 cells. SPD at 1 microM exerted a beffer antiestrogenic activity than 1 microM tamoxifen in suppressing the growth of MCF-7 cells stimulated by 1 nM estradiol. Combined treatment of both SPD and tamoxifen at 1 microM showed additional inhibition on the growth of MCF-7 cells in culture. The antiproliferative properties of SPD are effective on both receptor positive and receptor negative mammary cancer cells, and thus appear to be neither dependent on cellular receptor status nor cellular hormone responses. This enhances in vivo approaches as tumors are heterogenous masses with varying receptor status.
  12. Farshad Ashraf M, Abd Aziz M, Abdul Kadir M, Stanslas J, Farokhian E
    Plant Cell Physiol, 2013 Aug;54(8):1356-64.
    PMID: 23749812 DOI: 10.1093/pcp/pct083
    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.
  13. Labrooy C, Abdullah TL, Stanslas J
    Trop Life Sci Res, 2020 Apr;31(1):123-139.
    PMID: 32963715 DOI: 10.21315/tlsr2020.31.1.8
    Kaempferia parviflora is an ethnomedicinally important plant. Conventional propagation of K. parviflora is hindered by slow growth rate, long dormancy periods and dual use of rhizomes for seeds as well as marketable produce. In our study, we developed a promising dual-phase micropropagation protocol to increase number of plantlets, survivability, biomass and quality plantlets for mass production. Multiple shoot regeneration was found most successful on Murashige and Skoog (MS) media supplemented with 35.52 μM N6-benzyladenine (BA) in terms of highest number of shoots (22.4 ± 1.84), leaves (29.27 ± 1.30), and roots (17.8 ± 1.72) per explant. High survivability was observed with an acclimatisation percentage of 100% in sterile perlite medium. This method was shown to be preferable compared to conventional propagation in terms of propagation time and number of plantlets. Regenerated in vitro plantlets were then successfully induced to form microrhizomes in MS media with an optimal concentration of 6% (w/v) sucrose. Increase in microrhizome biomass (35.7 ± 2.59 g per flask), number of microrhizomes (5.2 ± 0.78), shoots (8.5 ± 1.58) and roots (8.5 ± 1.58) were observed for this treatment. This investigation successfully highlights the manipulation of single factors in short time frame to produce a simple and efficient alternative propagation method for K. parviflora.
  14. Yahaya MAF, Bakar ARA, Stanslas J, Nordin N, Zainol M, Mehat MZ
    BMC Biotechnol, 2021 06 05;21(1):38.
    PMID: 34090414 DOI: 10.1186/s12896-021-00697-4
    BACKGROUND: Neuroinflammation has been identified to be the key player in most neurodegenerative diseases. If neuroinflammation is left to be unresolved, chronic neuroinflammation will be establish. Such situation is due to the overly-activated microglia which have the tendency to secrete an abundance amount of pro-inflammatory cytokines into the neuron microenvironment. The abundance of pro-inflammatory cytokines will later cause toxic and death to neurons. Toll-like receptor 4 (TLR4)/MD-2 complex found on the cell surface of microglia is responsible for the attachment of LPS and activation of nuclear factor-κB (NF-κB) downstream signalling pathway. Albeit vitexin has been shown to possess anti-inflammatory property, however, little is known on its ability to bind at the binding site of TLR4/MD-2 complex of microglia as well as to be an antagonist for LPS.

    RESULTS: The present study reveals that both vitexin and donepezil are able to bind at the close proximity of LPS binding site located at the TLR4/MD-2 complex with the binding energy of - 4.35 and - 9.14 kcal/mol, respectively. During molecular dynamic simulations, both vitexin and donepezil formed stable complex with TLR4/MD-2 throughout the 100 ns time length with the root mean square deviation (RMSD) values of 2.5 Å and 4.0 Å, respectively. The root mean square fluctuation (RMSF) reveals that both compounds are stable. Interestingly, the radius of gyration (rGyr) for donepezil shows notable fluctuations when compare with vitexin. The MM-GBSA results showed that vitexin has higher binding energy in comparison with donepezil.

    CONCLUSIONS: Taken together, the findings suggest that vitexin is able to bind at the binding site of TLR4/MD-2 complex with more stability than donepezil throughout the course of 100 ns simulation. Hence, vitexin has the potential to be an antagonist candidate for LPS.

  15. Chandran R, Mohd Tohit ER, Stanslas J, Salim N, Tuan Mahmood TM
    Tissue Eng Part C Methods, 2022 10;28(10):545-556.
    PMID: 35485888 DOI: 10.1089/ten.TEC.2022.0045
    Caffeine is therapeutically effective for treating apnea, cellulite formation, and pain management. It also exhibits neuroprotective and antioxidant activities in different models of Parkinson's disease and Alzheimer's disease. However, caffeine administration in a minimally invasive and sustainable manner through the transdermal route is challenging owing to its hydrophilic nature. Therefore, this study demonstrated a transdermal delivery approach for caffeine by utilizing hydrogel microneedle (MN) as a permeation enhancer. The influence of formulation parameters such as molecular weight (MW) of PMVE/MA (polymethyl vinyl ether/maleic anhydride) copolymer and sodium bicarbonate (NaHCO3) concentration on the swelling kinetics and mechanical integrity of the hydrogel MNs was investigated. In addition, the effect of different MN application methods and needle densities of hydrogel MN on the skin insertion efficiency and penetration depth was also evaluated. The swelling degree at equilibrium percentage (% Seq) recorded for hydrogels fabricated with Gantrez S-97 (MW = 1,500,000 Da) was significantly higher than formulation with Gantrez AN-139 (MW = 1,080,000 Da). Increasing the concentration of NaHCO3 also significantly increased the % Seq. Moreover, a 100% penetration was recorded for both the applicator and combination of applicator and thumb pressure compared with only 11% for thumb pressure alone. The average diameter of micropores created by the applicator method was 62.94 μm, which was significantly lower than the combination of both applicator and thumb pressure MN application (100.53 μm). Based on histological imaging, the penetration depth of hydrogel MN increased as the MN density per array decreased. The hydrogel MN with the optimized formulation and skin insertion parameters was tested for caffeine delivery in an in vitro Franz diffusion cell setup. Approximately 2.9 mg of caffeine was delivered within 24 h, and the drug release profile was best fitted to the Korsmeyer-Peppas model, displaying Super Case II kinetics. In conclusion, a combination of thumb and impact application methods and reduced needle density improved the skin penetration efficiency of hydrogel MNs. The results also show that hydrogel MNs fabricated from 3% w/w NaHCO3 and high MW of copolymer exhibit optimum physical and swelling properties for enhanced transdermal delivery.
  16. Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, et al.
    PLoS One, 2021;16(3):e0249091.
    PMID: 33784348 DOI: 10.1371/journal.pone.0249091
    Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
  17. Muhamad SA, Safuan S, Stanslas J, Wan Ahmad WAN, Bushra SM, Nurul AA
    Sci Rep, 2023 Oct 27;13(1):18442.
    PMID: 37891170 DOI: 10.1038/s41598-023-45640-z
    Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used traditionally to treat various illnesses, including asthma in Southeast Asia. This study was carried out to evaluate the effect of L. rhinocerotis extract (LRE) on airway inflammation and remodelling in a chronic model of asthma. The present study investigated the therapeutic effects of LRE on airway inflammation and remodelling in prolonged allergen challenged model in allergic asthma. Female Balb/C mice were sensitised using ovalbumin (OVA) on day 0 and 7, followed by OVA-challenged (3 times/week) for 2, 6 and 10 weeks. LRE (125, 250, 500 mg/kg) were administered by oral gavage one hour after every challenge. One group of mice were left untreated after the final challenge for two weeks. LRE suppressed inflammatory cells and Th2 cytokines (IL-4, IL-5 and IL-13) in BALF and reduced IgE level in the serum. LRE also attenuated eosinophils infiltration and goblet cell hyperplasia in the lung tissues; as well as ameliorated airway remodelling by reducing smooth muscle thickness and reducing the expressions of TGF-β1 and Activin A positive cell in the lung tissues. LRE attenuated airway inflammation and remodelling in the prolonged allergen challenge of allergic asthma model. These findings suggest the therapeutic potential of LRE as an alternative for the management of allergic asthma.
  18. Quah SY, Wong CC, Wong HC, Ho KL, Abdul Manan N, Deb PK, et al.
    Toxicol Appl Pharmacol, 2021 08 15;425:115605.
    PMID: 34087331 DOI: 10.1016/j.taap.2021.115605
    Chemoresistance poses a major hurdle to cancer treatments. Andrographolide-derived SRJ09 and SRJ23 were reported to exhibit potent, selective inhibitory activities against colon and prostate cancer cells, respectively. In this study, previously developed resistant colon (HCT-116rst09) and prostate (PC-3rst23) cancer cell lines were used to elucidate the molecular mechanisms contributing to chemoresistance. Cytotoxic effects of SRJ09 and SRJ23 on both parental and resistant cells were investigated. Cell cycle distributions in HCT-116rst09 cells following SRJ09 treatment were analysed using flow cytometry. Whole-genome microarray analysis was performed on both parental and resistant cells to obtain differential gene expression profiles. Microarray data were subjected to protein-protein interaction network, functional enrichment, and pathway analyses. Reverse transcription-polymerase chain reaction (RT-PCR) was used to validate the changes in expression levels of selected genes. Besides morphological changes, HCT-116rst09 cells showed 7.0-fold resistance to SRJ09 while PC-3rst23 cells displayed a 5.5-fold resistance to SRJ23, as compared with their respective parental cells. G0/G1-phase cell cycle arrest was observed in HCT-116rst09 cells upon SRJ09 treatment. Collectively, 77 and 21 genes were found differentially modulated in HCT-116rst09 and PC-3rst23 cells, respectively. Subsequent bioinformatics analysis revealed several genes associated with FGFR4 and PI3K pathways, and cancer stemness, were chemoresistance mediators in HCT-116rst09 cells. RT-PCR confirmed the HMOX1 upregulation and ATG12 downregulation protected the PC-3rst23 cells from SRJ23 cytotoxicity. In conclusion, acquired chemoresistance to SRJ09 and SRJ23 in colon and prostate cancer cells, respectively, could be attributed to the alterations in the expression of genes such as those related to PI3K and autophagy pathways.
  19. Muniandy SV, Stanslas J
    Comput Med Imaging Graph, 2008 Oct;32(7):631-7.
    PMID: 18707844 DOI: 10.1016/j.compmedimag.2008.07.003
    Chromatin morphologies in human breast cancer cells treated with an anti-cancer agent are analyzed at their early stage of programmed cell death or apoptosis. The gray-level images of nuclear chromatin are modelled as random fields. We used two-dimensional isotropic generalized Cauchy field to characterize local self-similarity and global long-range dependence behaviors in the image spatial data. Generalized Cauchy field allows the description of fractal behavior inferred from fractal dimension and the long-range dependence inferred from correlation exponent to be carried out independently. We demonstrated the usefulness of locally self-similar random fields with long-range dependence for modelling chromatin condensation.
  20. Wong MS, Sidik SM, Mahmud R, Stanslas J
    Clin Exp Pharmacol Physiol, 2013 May;40(5):307-19.
    PMID: 23534409 DOI: 10.1111/1440-1681.12083
    Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links