Displaying publications 41 - 60 of 205 in total

Abstract:
Sort:
  1. Chong WT, Tan CP, Cheah YK, B Lajis AF, Habi Mat Dian NL, Kanagaratnam S, et al.
    PLoS One, 2018;13(8):e0202771.
    PMID: 30142164 DOI: 10.1371/journal.pone.0202771
    Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.
  2. Choo KY, Ong YY, Lim RLH, Tan CP, Ho CW
    Food Sci Biotechnol, 2019 Aug;28(4):1163-1169.
    PMID: 31275716 DOI: 10.1007/s10068-018-00550-z
    Betacyanins are bioactive dietary phytochemicals which can be found in red dragon fruit (RDF). Therefore, the bioaccessibility of betacyanins that present in fermented red dragon fruit drink (RDFD) and pressed red dragon fruit juice (RDFJ) was accessed in simulated gastric and intestinal digestion. Results disclosed that betacyanins from RDFD and RDFJ suffered minor loss (
  3. Choo KY, Kho C, Ong YY, Thoo YY, Lim RLH, Tan CP, et al.
    Food Sci Biotechnol, 2018 Oct;27(5):1411-1417.
    PMID: 30319851 DOI: 10.1007/s10068-018-0367-4
    The objective of this work was to study the effect of storage temperatures and duration on the stability of fermented red dragon fruit drink (FRDFD) on its betacyanins content, physicochemical and microbiological qualities (BPM) and determining sensory acceptability. Results showed that both storage temperatures and duration have a significant effect on betacyanins content and physicochemical properties of FRDFD. Aerobic mesophilic and yeast and mold counts were lower than 1 × 103 CFU/mL for FRDFD stored at both temperatures. The loss of betanin (16.53-13.93 g/L) at 4 °C was 15.73% with no significant changes in physicochemical properties from week two onwards compared to 56.32% (16.53-7.22 g/L) of betanin loss at 25 °C. At week eight, FRDFD stored at 4 °C still contained 13.93 g/L betanin with a pH value of 3.46, suggested its potential as a functional drink which is sensory acceptable (mean score > 80% using hedonic test) among consumers.
  4. Chow YH, Yap YJ, Tan CP, Anuar MS, Tejo BA, Show PL, et al.
    J Biosci Bioeng, 2015 Jul;120(1):85-90.
    PMID: 25553974 DOI: 10.1016/j.jbiosc.2014.11.021
    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load.
  5. Chu CC, Hasan ZABA, Tan CP, Nyam KL
    J Pharm Sci, 2021 Dec;110(12):3929-3936.
    PMID: 34425132 DOI: 10.1016/j.xphs.2021.08.020
    Chronic exposure to ultraviolet (UV) radiation leads to photoaging. There is a tremendous rise in products having a dual activity of photoprotection and antiaging. In vitro analysis in dermal fibroblasts and their biological mechanisms involved are critical to determine antiaging potential. The study aimed to investigate the antiaging potential of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction (NLC-TRF sunscreen). The antioxidant activity of the NLC-TRF sunscreen was evaluated by radical scavenging and hydrogen peroxide inhibition properties. Also, collagenase, elastase and matrix metalloproteinase-1 (MMP-1) inhibition activities, and type I collagen and elastin protein expression were studied. Quantitative real-time polymerase chain reaction (qPCR) was used to evaluate the mRNA expression of fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), elastin (ELN), MMP-1, MMP-2, and tissue inhibitor matrix metalloproteinase-1 (TIMP-1). The results suggested that NLC-TRF sunscreen is effective in radical, anti-hydrogen peroxide, and collagenase, elastase and MMP-1 inhibition activities. Besides, a significant increase for type I collagen (3.47-fold) and elastin (2.16-fold) protein and fibroblast regeneration genes (FGF (2.12-fold), VEGF (1.91-fold), TGF-β1 (2.84-fold), TIMP-1 (1.42-fold), ELN (2.13-fold)) were observed after sample treatment. These findings support the therapeutic potential of NLC-TRF sunscreen in antiaging.
  6. Cui J, Yang Z, Xu Y, Tan CP, Zhang W
    Food Res Int, 2023 Dec;174(Pt 2):113653.
    PMID: 37981374 DOI: 10.1016/j.foodres.2023.113653
    Searching for green and ecofriendly solvents to replace classical solvents for industrial scale extraction of coconut oil is of great interest. To explore these possibilities, this study performed comprehensive comparative analyses of lipid profiles and phytosterol compositions in coconut oils obtained by extraction with n-hexane, absolute ethyl alcohol, deep eutectic solvent/n-hexane, dimethyl carbonate (DME) and cyclopentyl methyl ether (CPME) using a foodomics approach. Results indicated that CPME (64.23 g/100 g dry matter) and DME (65.64 g/100 g dry matter) showed comparable capacity for total lipid extraction of total lipids to classical solvents (63.5-65.66 g/100 g dry matter). Considering the phytosterol yield, CPME (644.26 mg/kg) exhibited higher selectivity than other solvents (535.64-622.13 mg/kg). No significant difference was observed in the fatty acid composition of coconut oil by the different solvents assayed. Additionally, total 468 lipid molecules were identified in the samples. For glycerolipid and sphingolipid, the five solvents showed comparable extraction capabilities. However, CPME exhibited higher extraction efficiency of polar lipids (glycerophospholipid and saccharolipid) than other solvents. Overall, these results may be a useful guide for the application of green solvents in industrial production of coconut oil.
  7. Daniali G, Jinap S, Hajeb P, Sanny M, Tan CP
    Food Chem, 2016 Dec 01;212:244-9.
    PMID: 27374529 DOI: 10.1016/j.foodchem.2016.05.174
    The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g.
  8. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
  9. Ding L, Zhang B, Tan CP, Fu X, Huang Q
    Int J Biol Macromol, 2019 Sep 15;137:1068-1075.
    PMID: 31260761 DOI: 10.1016/j.ijbiomac.2019.06.226
    The objective of this study is to investigate the effects of limited moisture content and storing temperature on the retrogradation of rice starch. Starch was gelatinized in various moisture contents (30-42%) and rice paste was stored at different temperatures (4 °C, 15 °C, 30 °C, -18/30 °C and 4/30 °C). X-ray diffraction (XRD) analysis revealed that after retrogradation, the crystalline type of rice starch changed from A-type to B + V type. The B-type crystallinity of retrograded rice starch under 30 °C was the highest among the five temperature conditions, and an increase in B-type crystallinity with increasing moisture content was observed. Differential scanning calorimetry (DSC) results revealed that rice starch retrogradation consists of recrystallization of amylopectin and amylose, and is mainly attributed to amylopectin. The higher moisture content was favorable for amylopectin recrystallization, whereas the moisture content had little effect on the amylose recrystallization. The optimal temperature for amylopectin and amylose recrystallization was 4 °C and 15 °C, respectively. The amylopectin recrystallization enthalpy of rice starch stored at 4/30 °C was mediated between 4 °C and 30 °C but always higher than that at -18/30 °C. On the whole, after being heated at 42% moisture content and stored at 4 °C, rice starch showed the maximum total retrogradation enthalpy (8.44 J/g).
  10. Ding Z, Jiang F, Shi J, Wang Y, He M, Tan CP, et al.
    Mol Nutr Food Res, 2023 Jan;67(2):e2200508.
    PMID: 36382382 DOI: 10.1002/mnfr.202200508
    SCOPE: Molecular networking (MN) analysis intends to provide chemical insight of untargeted mass spectrometry (MS) data to the user's underlying biological questions. Foodomics is the study of chemical compounds in food using advanced omics methods. In this study, an MS-MN-based foodomics approach is developed to investigate the composition and anti-obesity activity of cannabinoids in hemp oil.

    METHODS AND RESULTS: A total of 16 cannabinoids are determined in optimized microwave pretreatment of hemp oil using the developed approach. Untargeted metabolomics analysis reveals that cannabinoid extract (CE) and its major constituent (cannabidiol, CBD), can alleviate high glucose-induced increases in lipids and carbohydrates, and decreases in amino acid and nucleic acid. Moreover, CE and CBD are also found to suppress the expression levels of mdt-15, sbp-1, fat-5, fat-6, fat-7, daf-2, and elevate the expression level of daf-1, daf-7, daf-16, sod-3, gst-4, lipl-4, resulting in the decrease of lipid synthesis and the enhance of kinetism. Canonical correspondence analysis (CCA) uncovers strong associations between specific metabolic alterations and gene expression levels.

    CONCLUSION: These findings from this exploratory study offer a new insight into the roles of cannabinoids in the treatment of obesity and related complications.

  11. Gholivand S, Lasekan O, Tan CP, Abas F, Wei LS
    Food Chem, 2017 Jun 01;224:365-371.
    PMID: 28159281 DOI: 10.1016/j.foodchem.2016.12.075
    The solubility limitations of phenolic acids in many lipidic environments are now greatly improved by their enzymatic esterification in ionic liquids (ILs). Herein, four different ILs were tested for the esterification of dihydrocaffeic acid with hexanol and the best IL was selected for the synthesis of four other n-alkyl esters with different chain-lengths. The effect of alkyl chain length on the anti-oxidative properties of the resulted purified esters was investigated using β-carotene bleaching (BCB) and free radical scavenging method DPPH and compared with butylated hydroxytoluene (BHT) as reference compound. All four esters (methyl, hexyl, dodecyl and octadecyl dihydrocaffeates) exhibited relatively strong radical scavenging abilities. The scavenging activity of the test compounds was in the following order: methyl ester>hexyl ester⩾dodecyl ester>octadecyl ester>BHT while the order for the BCB anti-oxidative activity was; BHT>octadecyl ester>dodecyl ester>hexyl ester>methyl ester.
  12. Gholivand S, Lasekan O, Tan CP, Abas F, Wei LS
    Chem Cent J, 2017 May 26;11(1):44.
    PMID: 29086827 DOI: 10.1186/s13065-017-0276-2
    BACKGROUND: Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics.

    RESULTS: This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1.

    CONCLUSION: Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p 

  13. Goh KM, Lai OM, Abas F, Tan CP
    Food Chem, 2017 Jan 15;215:200-8.
    PMID: 27542468 DOI: 10.1016/j.foodchem.2016.07.146
    Soy sauce fermentation was simulated in a laboratory and subjected to 10min of sonication. A full factorial design, including different cycles, probe size, and amplitude was used. The composition of 17 free-amino acids (FAAs) was determined by the AccQ-Tag method with fluorescent detection. Main effect plots showed total FAAs extraction was favoured under continuous sonication at 100% amplitude using a 14mm diameter transducer probe, reaching 1214.2±64.3mg/100ml of total FAAs. Moreover, after 7days of fermentation, sonication treatment caused significantly higher levels (p<0.05) of glutamic acids (343.0±22.09mg/100g), total FAAs (1720.0±70.6mg/100g), and essential FAAs (776.3±7.0mg/100g) 3days sooner than the control. Meanwhile, enzymatic and microbial behaviours remained undisturbed. Collectively, the sonication to moromi resulted in maturation 57% faster than the untreated control.
  14. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) 
  15. Goh KM, Maulidiani M, Rudiyanto R, Wong YH, Ang MY, Yew WM, et al.
    Talanta, 2019 Jun 01;198:215-223.
    PMID: 30876552 DOI: 10.1016/j.talanta.2019.01.111
    The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to generate fusion result consisted from all the model mentioned above. All the models were evaluated based on validation performed using training and testing datasets. In addition, the box plot of coefficient of determination (R2), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared. Evaluation of performance based on the testing R2 and RMSE suggested that the cubist model predicted total MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting tendency was assessed based on differences in R2 and RMSE in the training and testing calibrations. The observations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The important variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the MCPDs originated from the -CH=CH2 or CH=CH (990-900 cm-1) and C-Cl stretch (800-700 cm-1) regions of the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable oils.
  16. Goh KM, Wong YH, Abas F, Lai OM, Mat Yusoff M, Tan TB, et al.
    Foods, 2020 Jun 04;9(6).
    PMID: 32512737 DOI: 10.3390/foods9060739
    Shortening derived from palm oil is widely used in baking applications. However, palm oil and the related products are reported to contain high levels of monochloropropandiol (MCPD) ester and glycidyl ester (GE). MCPD and glycidol are known as process contaminants, which are carcinogenic and genotoxic compounds, respectively. The objective was to evaluate the effects of antioxidant addition in palm olein and stearin to the content of MCPD esters and GE in baked cake. Butylated hydroxyanisole (BHA), rosemary extract and tocopherol were used to fortify the samples at 200 mg/kg and in combinations (400, 600 and 800 mg/kg rosemary or tocopherol combined with 200 mg/kg BHA). The MCPD esters and GE content, radical formation and the quality of the fats portion were analyzed. The results showed that palm olein fortified with rosemary extract yielded less 2-MCPD ester. The GE content was lower when soft stearin was fortified with rosemary. ESR spectrometry measurements showed that the antioxidants were effective to reduce radical formation. The synergistic effects of combining antioxidants controlled the contaminants formation. In conclusion, oxidation stability was comparable either in the single or combined antioxidants. Tocopherol in combination with BHA was more effective in controlling the MCPD esters and GE formation.
  17. Gu H, Huang X, Chen Q, Sun Y, Tan CP
    J Fluoresc, 2020 May;30(3):687-694.
    PMID: 32378115 DOI: 10.1007/s10895-020-02546-7
    The influences of metal atoms on optimized geometry structures, relative energies, frontline molecular orbitals, and binding energies of metalloporphyrin-based fluorescent array sensor were systematically investigated by density functional theory (DFT) at B3LYP/LAN2DZ level. DFT calculated results reveal that the selected metal atoms in the center of the metalloporphyrin plane provide difference performances of metalloporphyrin-based fluorescent array sensor for the rapid determination of trimethylamine. The calculated binding energies have displayed in the following order at the most stable states: zinc porphyrin (ZnP) 
  18. Hamid AA, Dek MS, Tan CP, Zainudin MA, Fang EK
    Antioxidants (Basel), 2014;3(3):502-15.
    PMID: 26785067 DOI: 10.3390/antiox3030502
    Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05), while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05) with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying.
  19. Han W, Chai X, Liu Y, Xu Y, Tan CP
    Food Chem, 2021 Dec 04;381:131745.
    PMID: 35124493 DOI: 10.1016/j.foodchem.2021.131745
    The effect of different types of oils including camellia oil (CLO), sunflower oil (SFO), corn oil (CO) and linseed oil (LO) on the formation, crystal network structure and mechanical properties of 4%wt beeswax (BW) in oleogel was investigated. BW oleogels containing oils with higher contents of polyunsaturated fatty acids gelled first (1%wt), especially LO with higher contents of linolenic acid rather than CLO with higher contents of monounsaturated fatty acids. In comparison, oils with higher polyunsaturated fatty acid contents exhibited higher Db with more extensive microstructure at different cooling rates, which was related to shorter nucleation induction time of crystal and higher crystallinity. Stronger van der Waals forces were observed in oleogels with higher polyunsaturated fatty acid contents especially for LO oleogel. Rheology also showed that LO oleogel with higher content of linolenic acid had higher crystallinity and lower crystal melting interfacial tension, resulting in the formation of a more stable network structure.
  20. Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y
    Food Chem, 2024 Mar 01;435:137584.
    PMID: 37774617 DOI: 10.1016/j.foodchem.2023.137584
    This study investigates the impact of various chain lengths of hydrophilic polyglycerol fatty acid esters (HPGEs), namely SWA-10D, M-7D and M-10D on protein interactions and their influence on the surface morphology and interfacial properties of low-fat aerated emulsions under different pressures conditions. M-7D and M-10D samples exhibited larger particle sizes, higher ζ-potential and rougher surface compared to SWA-10D sample at 1 % concentration of HPGEs. Consequently, M-7D and M-10D samples demonstrated lower values of G', G'', and higher values tan δ at the oil-water interface as pressure increased, thereby promoting the formation of less viscoelastic structures. M-7D sample, characterized by lower content of α-helix structures, resulted in an observable redshift in the NH and CO groups of the protein. Molecular docking analysis affirmed that M-7D sample exhibited a lower absolute binding energy value, indicating stronger interaction with the protein compared to other samples, ultimately contributing to the unstable interfacial membrane formed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links