Displaying publications 41 - 60 of 384 in total

Abstract:
Sort:
  1. Liao X, Zhang Y, Wang J, Kang J, Zhang J, Wang J, et al.
    Materials (Basel), 2019 Nov 09;12(22).
    PMID: 31717524 DOI: 10.3390/ma12223698
    The tunability of semi-conductivity in SrTiO3 single crystal substrates has been realized by a simple encapsulated annealing method under argon atmosphere. This high temperature annealing-induced property changes are characterized by the transmission spectra, scanning electron microscopy (SEM) and synchrotron-based X-ray absorption (XAS). We find the optical property is strongly influenced by the annealing time (with significant decrease of transmittance). A sub gap absorption at ~427 nm is detected which is attributed to the introduction of oxygen vacancy. Interestingly, in the SEM images, annealing-induced regularly rectangle nano-patterns are directly observed which is contributed to the conducting filaments. The XAS of O K-edge spectra shows the changes of electronic structure by annealing. Very importantly, resistance switching response is displayed in the annealed SrTiO3 single crystal. This suggests a possible simplified route to tune the conductivity of SrTiO3 and further develop novel resistance switching materials.
  2. Lew B, Chistopolskaya K, Liu Y, Talib MA, Mitina O, Zhang J
    Crisis, 2020 Mar;41(2):82-88.
    PMID: 30935245 DOI: 10.1027/0227-5910/a000604
    Background: According to the strain theory of suicide, strains, resulting from conflicting and competing pressures in an individual's life, are hypothesized to precede suicide. But social support is an important factor that can mitigate strains and lessen their input in suicidal behavior. Aims: This study was designed to assess the moderating role of social support in the relation between strain and suicidality. Methods: A sample of 1,051 employees were recruited in Beijing, the capital of China, through an online survey. Moderation analysis was performed using SPSS PROCESS Macro. Social support was measured with the Multidimensional Scale of Perceived Social Support, and strains were assessed with the Psychological Strains Scale. Results: Psychological strains are a good predictor of suicidality, and social support, a basic need for each human being, moderates and decreases the effects of psychological strains on suicidality. Limitations: The cross-sectional survey limited the extent to which conclusions about causal relationships can be drawn. Furthermore, the results may not be generalized to the whole of China because of its diversity. Conclusion: Social support has a tendency to mitigate the effects of psychological strains on suicidality.
  3. Jiang S, Chang L, Luo J, Zhang J, Liu X, Lee CY, et al.
    Analyst, 2021 Oct 11;146(20):6170-6177.
    PMID: 34522939 DOI: 10.1039/d1an01359a
    Triphenyltin chloride (TPhT) is an organotin compound that causes intensive toxicological risk to the environment and humans. A detection method with high sensitivity and stability is therefore desired to better detect TPhT. In this study, a novel SERS substrate was prepared by sputtering an ultra-thin Au layer on a honeycomb-like silver nanoarray fabricated via the nanosphere lithography method. The ultra-thin Au layer was formed by sputtering the intermittent Au nanoparticles on the silver nanoarray, resulting in bimetallic coupling with dramatically increased hotspots and extremely high SERS enhancement with an analytical enhancement factor (AEF) of 6.08 × 109 using Rhodamine 6G (R6G) as the probe molecule. Based on density functional theory (DFT) simulations, the Raman characteristic peaks of TPhT at 999 cm-1 and 655 cm-1 were selected for TPhT detection. The AEF of the SERS substrate HC5-AgAu was calculated to be 3.38 × 106 with the detection concentration of TPhT down to 10-10 M. The as-prepared honeycomb-like silver-gold bimetallic SERS substrate demonstrated great stability and sensitivity for TPhT detection, which might also be applied in monitoring many other environmental pollutants.
  4. Zhao Y, Han F, Guo L, Zhang J, Zhang H, Abdelaziz IIM, et al.
    Waste Manag, 2021 Dec;136:184-194.
    PMID: 34689097 DOI: 10.1016/j.wasman.2021.10.018
    Postconsumer polyethylene terephthalate (PET) has potential applications in many areas of manufacturing, but contamination by hazardous polyvinyl chloride (PVC) in common waste streams can reduce its recyclable value. Separating collected PET-PVC mixtures before recycling remains very challenging because of the similar physicochemical properties of PET and PVC. Herein, we describe a novel flotation process with corona modification pretreatment to facilitate the separation of PET-PVC mixtures. Through water contact angle, surface free energy, X-ray photoelectron and FT-IR characterization, we found that polar hydroxyl groups can be more easily introduced on the PVC surface than on the PET surface induced by corona modification. This selective wetting can suppress the floatability of PVC, leading to the separation of PET as floating product. A reliable mechanism including two different hydrogen-abstraction pathways was established. Response surface methodology consisting of Plackett-Burman and Box-Behnken designs was adopted for optimization of the combined process, and control parameters were solved based on high-quality prediction models, with fitting from significant variables and interactions. For physical or chemical circulation strategies with PET purity prioritization, the validated purity of the product reached 96.05% at a 626 W corona power, 5.42 m/min passing speed, 24.78 mg/L frother concentration and 286 L/h air flow rate. For the energy recuperation strategy with PET recovery prioritization, the factual recovery reached 98.08% under a 601 W corona power, 6.04 m/min passing speed, 27.55 mg/L frother concentration and 184 L/h air flow rate. The current work provides technological insights into the cleaner disposal of waste plastics.
  5. Zhou F, Lin S, Zhang J, Kong Z, Tan BK, Hamzah SS, et al.
    Photodiagnosis Photodyn Ther, 2021 Dec 08;37:102677.
    PMID: 34890782 DOI: 10.1016/j.pdpdt.2021.102677
    BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa) is an emerging opportunistic pathogen, which can cause bacterial skin diseases such as green nail syndrome, interdigital infections and folliculitis. Curcumin-mediated antimicrobial photodynamic therapy (aPDT) has been demonstrated as a promising therapeutic option for the treatment of skin infection though its inactivation of gram-negative bacteria such as P. aeruginosa.

    MATERIALS AND METHODS: In the present study, we examined the adjuvant effect of polymyxin B on the antibacterial activity of curcumin-mediated aPDT against P. aeruginosa. P. aeruginosa was treated with curcumin in the presence of 0.1-0.5 mg/L polymyxin B and irradiated by blue LED light (10 J/cm2). Bacterial cultures treated with curcumin alone served as controls. Colony forming units (CFU) were counted and the viability of P. aeruginosa was calculated after aPDT treatment. The possible underlying mechanisms for the enhanced killing effects were also explored.

    RESULTS: The killing effects of curcumin-mediated aPDT against P. aeruginosa was significantly enhanced by polymyxin B (over 2-log reductions). Moreover, it was also observed that addition of polymyxin B in the curcumin-mediated aPDT led to the apparent bacterial membrane damage with increased leakage of cytoplasmic contents and extensive DNA and protein degradation.

    DISCUSSION: The photodynamic action of curcumin against P. aeruginosa could be significantly enhanced by the FDA-approved drug polymyxin B. Our results highlight the potential of introducing polymyxin B to enhance the effects of aPDT treatment against gram-negative skin infections, in particular, P. aeruginosa.

  6. Zhang J, Li Y, Wu H, Wang C, Salleh KM, Li H, et al.
    Polymers (Basel), 2022 Oct 22;14(21).
    PMID: 36365467 DOI: 10.3390/polym14214473
    This study aimed to develop a safe and advanced antibacterial material of electrospun microfiber membranes (MFMs) for wound dressings. Combinations of several materials were investigated; thermal treatment and electrospinning techniques were used to form the best quality of MFMs to suit its end applications. By comparing the fiber morphology, diameter changes, and fracture strength, the suitable ratio of raw materials and thermal treatment were obtained before and after adding Trition X-100 as a surfactant for MFMs of sodium alginate/polyvinyl alcohol/polyethylene oxide (SA/PVA/PEO). The electrospinning solution was mixed with berberine as an antibacterial substance; meanwhile, calcium chloride (CaCl2) was used as the crosslinking agent. The antibacterial properties, water dissolution resistance, water content, and fracture strength were thoroughly investigated. The results showed that the antibacterial rates of MFMs with different mass fractions of berberine (0, 3, and 5 wt.%) to Escherichia coli (E. coli) were 14.7, 92.9, and 97.2%, respectively. The moisture content and fracture strength of MFMs containing 5 wt.% berberine were 72.0% and 7.8 MPa, respectively. In addition, the produced MFMs embodied great water dissolution resistance. Berberine-loaded SA/PVA/PEO MFMs could potentially serve as an antibacterial wound dressing substrate with low cost and small side effects.
  7. Jiang H, Zhang J, Zeng Y, Chen Y, Guo H, Li L, et al.
    Nanotechnology, 2021 Nov 18;33(6).
    PMID: 34724657 DOI: 10.1088/1361-6528/ac3540
    Metal sulfides are promising anode materials for lithium ion batteries because of the high specific capacities and better electrochemical kinetics comparing to their oxide counterparts. In this paper, novel monocrystalline wurtzite ZnS@N-doped carbon (ZnS@N-C) nanoplates, whose morphology and phase are different from the common ZnS particles with cubic phase, are successfully synthesized. The ZnS@N-C nanoplates exhibit long cycle life with a high reversible specific capacity of 536.8 mAh · g-1after 500 cycles at a current density of 500 mA · g-1, which is superior to the pure ZnS nanoplates, illustrating the obvious effect of the N-doped carbon coating for mitigating volume change of the ZnS nanoplates and enhancing the electronic conductivity during charge/discharge processes. Furthermore, it is revealed that the ZnS single crystals with wurtzite phase in the ZnS@N-C nanoplates are transformed to the polycrystalline cubic phase ZnS after charge/discharge processes. In particular, the ZnS@N-C nanoplates are combined with the commercial LiNi0.6Co0.2Mn0.2O2cathode to fabricate a new type of LiNi0.6Co0.2Mn0.2O2/ZnS@N-C complete battery, which exhibits good cycling durability up to 120 cycles at a charge/discharge rate of 1 C after the prelithiation treatment on the ZnS@N-C anode, highlighting the potential of the ZnS@N-C nanoplates anode material applied in lithium ion battery.
  8. Zhang J, Chu R, Chen Y, Jiang H, Zhang Y, Huang NM, et al.
    Nanotechnology, 2018 Jan 19.
    PMID: 29350621 DOI: 10.1088/1361-6528/aaa94c
    Binder-free nickle cobaltite on carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing the electrospun poly-acrylonitrile (PAN) in the nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in the air. Experimental results showed vertically aligned NiCo2O4 nanosheets were uniformly grown on the surface of CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance could be mainly attributed to these following reasons. (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as anchor the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in high specific surface area and effective buffer the volume changes during the repeated charge-discharge processes. Compared with the conventional hydrothermal method, the electrodeposition could significantly simplify the preparation of NiCo2O4, with shorter preparation period and lower energy consumption. This work provided an alternative strategy to obtain high performance anode for the lithium ion batteries.
  9. Liu W, Zhang J, Hashim JH, Jalaludin J, Hashim Z, Goldstein BD
    Environ Health Perspect, 2003 Sep;111(12):1454-60.
    PMID: 12948883
    Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter < 2.5 microm in diameter; PM(2.5)), polycyclic aromatic hydrocarbons (PAHs), aldehydes, and ketones. Having applied these measured emission rates to predict indoor concentrations under realistic room conditions, we found that pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes.
  10. Obayomi KS, Lau SY, Zahir A, Meunier L, Zhang J, Dada AO, et al.
    Chemosphere, 2023 Feb;313:137533.
    PMID: 36528163 DOI: 10.1016/j.chemosphere.2022.137533
    In this present study, silver (Ag) and titanium dioxide (TiO2) nanoparticles were successfully deposited on coconut shell-derived activated carbon (CSAC), to synthesize a novel nanocomposite (CSAC@AgNPs@TiO2NPs) for the adsorption of Methylene Blue (MB) dye from aqueous solution. The fabricated CSAC@AgNPs@TiO2NPs nanocomposite was analyzed by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray spectroscopy (EDS) detector, X-ray Photoelectron Spectroscope (XPS), and Brunauer-Emmett-Teller (BET). The successful deposition of AgNPs and TiO2NPs on CSAC surface was revealed by the TEM/EDX, SEM, and XPS analysis. The mesopore structure of CSAC@AgNPs@TiO2NPs has a BET surface area of 301 m2/g. The batch adsorption studies were conducted and the influence of different parameters, i.e., adsorbent dose, adsorption time, initial dye concentration, pH and temperature were investigated. The nonlinear isotherm and kinetic modelling demonstrated that adsorption data were best fitted by Sips isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of MB onto CSAC@AgNPs@TiO2NPs by the Sips model was 184 mg/g. Thermodynamic results revealed that the adsorption was endothermic, spontaneous and physical in nature. CSAC@AgNPs@TiO2NPs revealed that MB absorption by CSAC@AgNPs@TiO2NPs was spontaneous and endothermic. The uptake capacity of MB was influenced significantly by the presence of competing ions including, NO3-, HCO3, Ca2+, and Na+. Repeated tests indicated that the CSAC@AgNPs@TiO2NPs can be regenerated and reused six times before being discarded. The primary separation mechanism between MB dye and CSAC@AgNPs@TiO2NPs was the electrostatic interaction. Thus, CSAC@AgNPs@TiO2NPs was an outstanding material, which displayed good applicability in real water with ≥ 97% removal of MB dye.
  11. Wang J, Wang Z, Zhang J, Chai SP, Dai K, Low J
    Nanoscale, 2022 Dec 15;14(48):18087-18093.
    PMID: 36448604 DOI: 10.1039/d2nr05341a
    Heterojunction photocatalysts have shown their immense capability in enhancing photogenerated charge carrier separation. Yet, the intrinsic scarcity of active sites in semiconductor components of heterojunction photocatalysts limits their potential for photocatalysis being used in practical applications. Herein, we employ a non-noble metal cocatalyst (i.e., NiS) for modulating a S-scheme heterojunction photocatalyst consisting of Cd3(C3N3S3)2 (CdCNS) and CdS. It is revealed that the formation of the CdCNS/CdS S-scheme heterojunction can enable optimal photogenerated charge carrier utilization efficiency and optimized redox capability. More importantly, the meticulous loading of NiS can play multiple roles in enhancing the photocatalytic performance of the CdCNS/CdS photocatalyst, including endowing it with abundant surface-active sites and acting as a photogenerated electron acceptor. As a result, the optimized NiS-loaded CdCNS/CdS attains an excellent hydrogen production rate of 38.17 mmol g-1 h-1, to reach a quantum efficiency of 29.02% at 420 nm. The results reported in this work provide an interesting insight into the important roles of surface-active site modulation in optimizing photocatalytic performances.
  12. Yang Y, Cao Y, Zhang J, Fan L, Huang Y, Tan TC, et al.
    J Sci Food Agric, 2024 May;104(7):3926-3935.
    PMID: 38252625 DOI: 10.1002/jsfa.13273
    BACKGROUND: Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes.

    RESULTS: AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes.

    CONCLUSION: The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.

  13. Wang J, Vijaykrishna D, Duan L, Bahl J, Zhang JX, Webster RG, et al.
    J Virol, 2008 Apr;82(7):3405-14.
    PMID: 18216109 DOI: 10.1128/JVI.02468-07
    The transmission of highly pathogenic avian influenza H5N1 virus to Southeast Asian countries triggered the first major outbreak and transmission wave in late 2003, accelerating the pandemic threat to the world. Due to the lack of influenza surveillance prior to these outbreaks, the genetic diversity and the transmission pathways of H5N1 viruses from this period remain undefined. To determine the possible source of the wave 1 H5N1 viruses, we recently conducted further sequencing and analysis of samples collected in live-poultry markets from Guangdong, Hunan, and Yunnan in southern China from 2001 to 2004. Phylogenetic analysis of the hemagglutinin and neuraminidase genes of 73 H5N1 isolates from this period revealed a greater genetic diversity in southern China than previously reported. Moreover, results show that eight viruses isolated from Yunnan in 2002 and 2003 were most closely related to the clade 1 virus sublineage from Vietnam, Thailand, and Malaysia, while two viruses from Hunan in 2002 and 2003 were most closely related to viruses from Indonesia (clade 2.1). Further phylogenetic analyses of the six internal genes showed that all 10 of those viruses maintained similar phylogenetic relationships as the surface genes. The 10 progenitor viruses were genotype Z and shared high similarity (>/=99%) with their corresponding descendant viruses in most gene segments. These results suggest a direct transmission link for H5N1 viruses between Yunnan and Vietnam and also between Hunan and Indonesia during 2002 and 2003. Poultry trade may be responsible for virus introduction to Vietnam, while the transmission route from Hunan to Indonesia remains unclear.
  14. He Y, Zhu S, Zhang Y, Tan CP, Zhang J, Liu Y, et al.
    Eur J Clin Nutr, 2024 Jul;78(7):622-629.
    PMID: 38609641 DOI: 10.1038/s41430-024-01438-4
    BACKGROUND: Despite the abundance of research examining the effects of coffee, tea, and alcohol on inflammatory diseases, there is a notable absence of conclusive evidence regarding their direct causal influence on circulating inflammatory cytokines. Previous studies have primarily concentrated on established cytokines, neglecting the potential impact of beverage consumption on lesser-studied but equally important cytokines.

    METHODS: Information regarding the consumption of coffee, tea, and alcohol was collected from the UK Biobank, with sample sizes of 428,860, 447,485, and 462,346 individuals, respectively. Data on 41 inflammatory cytokines were obtained from summary statistics of 8293 healthy participants from Finnish cohorts.

    RESULTS: The consumption of coffee was found to be potentially associated with decreased levels of Macrophage colony-stimulating factor (β = -0.57, 95% CI -1.06 ~ -0.08; p = 0.022) and Stem cell growth factor beta (β = -0.64, 95% CI -1.16 ~ -0.12; p = 0.016), as well as an increase in TNF-related apoptosis-inducing ligand (β = 0.43, 95% CI 0.06 ~ 0.8; p = 0.023) levels. Conversely, tea intake was potentially correlated with a reduction in Interleukin-8 (β = -0.45, 95% CI -0.9 ~ 0; p = 0.045) levels. Moreover, our results indicated an association between alcohol consumption and decreased levels of Regulated on Activation, Normal T Cell Expressed and Secreted (β = -0.24, 95% CI -0.48 ~ 0; p = 0.047), as well as an increase in Stem cell factor (β = 0.17, 95% CI 0.02 ~ 0.31; p = 0.023) and Stromal cell-derived factor-1 alpha (β = 0.20, 95% CI 0.04 ~ 0.36; p = 0.013).

    CONCLUSION: Revealing the interactions between beverage consumption and various inflammatory cytokines may lead to the discovery of novel therapeutic targets, thereby facilitating dietary interventions to complement clinical disease treatments.

  15. Zhang J, Zhao J, Zuo X, You W, Ru X, Xu F, et al.
    Food Chem, 2024 Jun 15;443:138545.
    PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545
    The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.
  16. You W, Zhang J, Ru X, Xu F, Wu Z, Jin P, et al.
    Plant Physiol Biochem, 2024 Jan;206:108217.
    PMID: 38039581 DOI: 10.1016/j.plaphy.2023.108217
    The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.
  17. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Jul 15;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
  18. Chang L, Liu X, Luo J, Lee CY, Zhang J, Fan X, et al.
    Adv Mater, 2024 Mar;36(13):e2310469.
    PMID: 38193751 DOI: 10.1002/adma.202310469
    Metastructures are widely used in photonic devices, energy conversion, and biomedical applications. However, to fabricate multiple patterns continuously in single etching protocol with highly tunable photonic properties is challenging. Here, a simple and robust dynamic nanosphere lithography is proposed by inserting a spacer between the nanosphere assembly and the wafer. The nanosphere diameter decrease and uneven penetration of the spacer during etching lead to a dynamic masking process. Coupled anisotropic physical ion sputtering and ricocheting with isotropic chemical radical etching achieve highly tunable structures with various 3D patterns continuously forming through a single etching process. Specifically, the nanosphere diameters define the periodicity, the etched spacer forms the upper parts, and the wafer forms the lower parts. Each part of the structure is highly tunable through changing nanosphere diameter, spacer thickness, and etch conditions. Using this protocol, numerous structures of varying sizes including nanomushrooms, nanocones, nanopencils, and nanoneedles with diverse shapes are realized as proof of concepts. The broadband antireflection ability of the nanostructures and their use in surface-enhanced Raman spectroscopy are also demonstrated for practical application. This method substantially simplifies the fabrication procedure of various metastructures, paving the way for its application in multiple disciplines especially in photonic devices.
  19. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
  20. Obayomi KS, Lau SY, Danquah MK, Zhang J, Chiong T, Takeo M, et al.
    Materials (Basel), 2023 Jun 14;16(12).
    PMID: 37374562 DOI: 10.3390/ma16124379
    In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links