Displaying publications 41 - 57 of 57 in total

Abstract:
Sort:
  1. Chew SC
    Food Res Int, 2020 05;131:108997.
    PMID: 32247493 DOI: 10.1016/j.foodres.2020.108997
    Rapeseed oil is the second most abundant produced edible oil in the world with low erucic acid and low glucosinolate. Thus, the quality of rapeseed oil had attracted global attention. Cold-pressed rapeseed oil appeared to be a preferred choice than refined oil as no solvent and less processing involved in the cold-pressing. The methods of cold-pressing and microwave pre-treatment on the extraction yield and bioactive compounds of rapeseed oil have been reviewed in this paper. Cold-pressed rapeseed oil offers health benefits due to its preserved fatty acid profile and bioactive compounds. High phenolic compounds, tocopherols, phytosterols, and carotenoids contents in the cold-pressed rapeseed oil offer health benefits like regulating blood lipid profile, insulin sensitivity, and glycemic control, as well as offer antioxidant and cytotoxic activity. Besides using as edible oil, cold-pressed rapeseed oil find applications in animal feed, chemical, and fuel.
    Matched MeSH terms: Brassica napus/chemistry*
  2. Tran HT, Lin C, Lam SS, Le TH, Hoang HG, Bui XT, et al.
    Environ Pollut, 2023 Jan 01;316(Pt 2):120640.
    PMID: 36403881 DOI: 10.1016/j.envpol.2022.120640
    Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.
    Matched MeSH terms: Brassica*
  3. Liang JL, Yeow CC, Teo KC, Gnanaraj C, Chang YP
    J Food Sci Technol, 2019 Oct;56(10):4696-4704.
    PMID: 31686701 DOI: 10.1007/s13197-019-03912-5
    The capsicum seed core and cabbage outer leaves are common wastes generated in the vegetable processing industry. We explored the in vitro health-promoting activity of these waste products for valorization. Freeze-dried and pulverized cabbage wastes had a high bile acid binding capacity and the capsicum wastes inhibited glucose dialysis more effectively. Methanolic extracts prepared with conventional solvent extraction and ultrasound-assisted extraction were analyzed to determine their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, in vitro α-amylase inhibitory, in vitro lipase inhibitory, and prebiotic activity. Crude extracts of cabbage and capsicum wastes were screened using GC-MS analysis. The cabbage waste extracts showed high antioxidant activities but did not inhibit α-amylase. The capsicum waste extracts inhibited both lipase and α-amylase activities and supported the growth of the probiotic bacterium, Lactobacilli brevis. Volatile compounds of the vegetables consisted mainly of phenols and fatty acid esters. In all assays except the α-amylase inhibition assay, the extracts prepared with ultrasound-assisted solvent extraction showed higher activity than those prepared using the conventional method. The capsicum seed core and cabbage outer leaves are potential sources of phytochemicals and antioxidant fibers. Capsicum waste extract supported probiotic bacterial growth without a lag phase. These waste products may be processed into high-value functional ingredients.
    Matched MeSH terms: Brassica
  4. Graham NS, Hammond JP, Lysenko A, Mayes S, O Lochlainn S, Blasco B, et al.
    Plant Cell, 2014 Jul;26(7):2818-30.
    PMID: 25082855 DOI: 10.1105/tpc.114.128603
    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
    Matched MeSH terms: Brassica/genetics*; Brassica/metabolism
  5. Neik TX, Amas J, Barbetti M, Edwards D, Batley J
    Plants (Basel), 2020 Oct 10;9(10).
    PMID: 33050509 DOI: 10.3390/plants9101336
    Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
    Matched MeSH terms: Brassica; Brassica napus; Brassica rapa
  6. Ton LB, Neik TX, Batley J
    Genes (Basel), 2020 09 30;11(10).
    PMID: 33008008 DOI: 10.3390/genes11101161
    Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
    Matched MeSH terms: Brassica napus/genetics*; Brassica napus/growth & development; Brassica napus/physiology
  7. Sundram K, Pathmanathan R, Wong KT, Baskaran G
    Asia Pac J Clin Nutr, 1997 Mar;6(1):31-5.
    PMID: 24394650
    Thirty six-male New Zealand White rabbits subdivided into four dietary groups (9 animals per group) were fed high fat (36% en), cholesterol-free diets for nine months. The dietary oil blends were formulated to contain high levels of the target fatty acids namely trans-rich (partially hydrogenated soybean oil; TRANS), cis monounsaturated-rich (rapeseed, sunflower seed oil and palm olein; MONO), palmitic-rich (palm olein; POL) and lauric-myristic rich (coconut, palm kernel and corn oils; LM). Ad libitum feeding of the rabbits resulted in normal growth throughout the nine months and no differences in the final body weights of the animals were evident at autopsy. Plasma total cholesterol was significantly elevated only by the LM enriched diet compared with all other treatments; values were comparable between the other three treatment groups. Changes in the total cholesterol were not reflected in the VLDL and LDL lipoproteins. However, HDL-cholesterol was significantly lowered by the TRANS diet compared with all other dietary groups. HDL-cholesterol was also significantly increased by the LM diet in comparison to the POL-diet. Both adipose and liver triglyceride fatty acid compositions tended to reflect the type of fatty acids fed the animals. Trans fatty acids were evident only in animals fed the trans diet and it was apparent that the trans fatty acids competed with linoleic acid for incorporation into these tissues. Increased concentrations of lauric and myristic fatty acids in the LM-fed animals were also evident. In the POL and high MONO fed rabbits, palmitic and oleic fatty acids (respectively) were concentrated in the adipose and liver. The diets, however, failed to induce severe atherosclerosis in this study. This can be explained, in part, by the lack of dietary cholesterol and the use of plant (rather than animal) proteins in our dietary formulations. The effect of these important atherosclerosis modulators in association with these fatty acids requires further evaluation.
    Matched MeSH terms: Brassica rapa
  8. Tiong SH, Saparin N, Teh HF, Ng TLM, Md Zain MZB, Neoh BK, et al.
    J Agric Food Chem, 2018 Jan 31;66(4):999-1007.
    PMID: 29260544 DOI: 10.1021/acs.jafc.7b04995
    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
    Matched MeSH terms: Brassica rapa
  9. Nasser Shahsavari, Hasnah Mohd. Jais, Amir Hossein Shirani Rad
    Sains Malaysiana, 2014;43:1549-1555.
    The effects of zeolite and zinc foliar applications on the biochemical characteristics of canola cultivars under different moisture regimes were investigated in a study conducted during the 2010 and 2011 growing seasons. The study was completed using a factorial split-plot experiment based on randomized complete block design (RCBD) with three replications at the Seed and Plant Improvement Institute (SPII), Karaj, Iran. The treatments were: irrigation (I): complete (I1) and restricted (I2); zeolite (Z): 0 (Z1) and 15 ton ha-1 (Z2) and Zn: 0, 0.1 and 0.2% concentrations of zinc sulfate (Zn1, Zn2, and Zn3) at the pod formation stage. These treatments were applied during the pod formation stage to the Licord, RGS003 and Opera cultivars. This study showed that although applying Z and Zn had positive effects on the quality of canola, the highest performance and the best results were obtained using a combination of Z and Zn. The combined application of Z and Zn decreased the proline and carbohydrate contents to 44.35 and 34.42%, respectively. Therefore, with the low cost of natural Z and moderate Zn intake, these treatments can be used to enhance the performance of canola, especially in regions frequently subjected to water stress.
    Matched MeSH terms: Brassica napus
  10. Ahmad Mahir Razali, Khairiah Jusoh, Nor Asyikin A, Siti Adyani S, Wardatun Aathirah M, Maimon Abdullah, et al.
    Kajian yang dijalankan adalah berkaitan dengan penentuan model yang sesuai serta analisis data penyerapan logam berat oleh sayuran berdaun yang terpilih iaitu kangkung (Ipomea aquatica), sawi bunga (Brassica chinensis var parachinensis), bayam (Amaranthus oleraceus L) dan sawi putih (Brassica chinensis L.). Kajian ini bertujuan untuk menentukan dan membandingkan kandungan serta corak pengambilan logam berat yang diserap oleh sayuran dan juga bahagian-bahagiannya yang meliputi daun, batang dan akar. Penentuan model yang dibuat bertujuan bagi melihat corak penyerapan logam berat oleh sayuran atau bahagian sayuran tertentu. Logam berat yang dikaji terdiri daripada kadmium , kromium, kuprum, ferum , mangan, plumbum dan zink. Plot serakan digunakan bagi menentukan corak pengambilan logam berat dalam sayuran dan bahagian-bahagiannya. Selain itu ujian Kruskal-Wallis digunakan bagi membuat perbandingan median di antara logam berat yang diserap oleh sayuran yang dikaji. Nilai khi-kuasa dua dan juga nilai-p digunakan bagi menentukan sama ada sesuatu logam berat yang diserap itu berkait rapat dengan jenis sayuran secara signifikan. Secara umum bolehlah dikatakan bahawa logam Fe, Mn dan Zn adalah dominan dalam semua bahagian sayuran yang dikaji. Selain itu, melalui ujian Kruskal-Wallis didapati penyerapan kesemua logam berat pada setiap bahagian sayuran adalah berbeza secara signifikan. Penyuaian model regresi linear, kuadratik, kubik atau eksponen telah dilakukan terhadap data ini dan didapati kebanyakan data dapat disuaikan dengan baik oleh model kuadratik dan kubik berdasarkan nilai pekali penentuan (R2).
    Matched MeSH terms: Brassica
  11. Chang, S.K., Nagendra Prasad, K., Amin, I.
    MyJurnal
    Green leafy vegetables are good sources of carotenoids. Generally, food composition databases related to raw foods are available, but data on cooked foods in Malaysia are still lacking. Since carotenoids are prone to degradation during cooking processes, the present study was undertaken to evaluate the extent of nutrient loss in vegetables subjected to two conventional cooking methods, which were boiling and stir-frying with cooking durations of 4 and 8 minutes. The vegetables selected were Chinese cabbage (Brassica Pekinensis var. cephalata), swamp cabbage (Ipomoea aquatica), spinach (Spinacia oleracea), Ceylon spinach (Basella rubra), red spinach (Amaranthus gangeticus), white spinach (Amaranthus viridis) and tapioca shoots (Manihot utilissima). Percentage losses of nutrients after cooking treatment were calculated based on retention factors. Results obtained showed that stir-frying had reduced lutein content for all vegetables ranging from 8-89% while the effect of boiling for lutein varied (0-428%) with different vegetables at both cooking durations of 4 and 8 min. Boiling for 8 min increased retention of β carotene in all vegetables ranging from 18-380% except for Chinese cabbage and spinach compared with 4 min, while stir-frying generally increased the retention of β-carotene for all vegetables 2-3 times except for spinach. Cooked vegetables have variations in carotenoids composition brought by varying cooking conditions (time and temperature), type of vegetables and the interaction between cooking methods and type of vegetables.
    Matched MeSH terms: Brassica
  12. Sharif Hossain AB, Haq I, Ibrahim NA, Aleissa MS
    Data Brief, 2016 Mar;6:214-20.
    PMID: 26862562 DOI: 10.1016/j.dib.2015.11.061
    Plant tissue or cell culture keeps a significant role in micro-propagation in the plant production industry. Combination of 6-Benzylaminopurine (BAP) and other plant growth regulators like 1-Naphthaleneacetic acid (NAA) or Indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA) was used in the most of the research in tissue culture. The study was carried out to investigate the optimization of the concentration of IBA and BAP combination (0, 0.25, 0.50, 1.0, 1.50, 2.0, 2.5, 3.0 and 3.5 mg/l) for the root, callus and leaf proliferation from the leaf cutting slice. The highest number (6.75) of root proliferation was observed in the concentration of 2.0 mg/l IBA+0.25 mg/l BAP combination. The callus initiation was found in the concentration of IBA 1.0-3.5 mg/l+BAP 1.0-2.0 mg/l. However, the highest callus weight was observed at the concentration of IBA 1.5 mg/l+BAP 1.0 mg/l combination than other combination of concentrations. Positively leaf initiation and formation was better in the concentration of IBA 1-3.5 mg/l+BAP 1.0-2.0 mg/l combination. In addition, the 2,2-diphenyl-2-picrylhydarzyl (DPPH) free radical scavenging potential was higher (70.1%) in leaves extract than in callus extracts (46.3%) at the concentration of 10 mg/ml though both extracts had lower DPPH free radical scavenging activity compared to the positive control, vitamin C and BHT. Theresults conclude that the optimum concentration was IBA 1.5 mg/l+BAP 1.0 mg/l combination to produce callus cell proliferation and concentration of 2.0 mg/l IBA+0.25 mg/l BAP combination was the optimum for root proliferation of broccoli in vitro.
    Matched MeSH terms: Brassica
  13. Hossain AS, Alrudayni HA, Haouala F, Aleissa MS, Kahrizi D, Ahmed AS
    Cell Mol Biol (Noisy-le-grand), 2023 Nov 15;69(11):45-50.
    PMID: 38015542 DOI: 10.14715/cmb/2023.69.11.8
    The study was conducted to evaluate the root, shoot and leaf callus cell regeneration and its biochemical properties like antioxidant, carbohydrate, pigment and mineral content from broccoli root, shoot and leaf cutting in vitro. An in vitro factorial experiment was carried out based on a Completely Randomized Design (CRD) with 5 replicates in tissue culture applying different IBA (0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 mg/l) and BAP (1 mg/l) concentrations using broccoli root tip and leaf cutting. The results showed that a higher callus weight was found in the cultured leaf cutting than in root tip cutting in the concentration of 1.0, 1.5 & 2.0 mg/l IBA + 1.0 mg/l BAP combination. The highest callus weight was found in the cultured leaf cutting than root tips cutting at the concentration of 1.5mg/l IBA+1.0 mg/l BAP. Furthermore, the highest inverted sugar and glucose, chlorophyll and nutrient content (K+, NO3- & Ca++), total phenol, flavonoid and total antioxidant were found in the concentration of 1.5mg/l IBA+1.0 mg/l BAP combination in both broccoli leaf and root cutting. The results seemed that it was best to use the combination of the IBA and BAP in the concentration of 1.0-2.0 mg/l and 1mg/l to regenerate root, leaf and callus cell proliferation of broccoli from the root tip and leaf cutting.
    Matched MeSH terms: Brassica*
  14. Ahmad NA, Yook Heng L, Salam F, Mat Zaid MH, Abu Hanifah S
    Sensors (Basel), 2019 Nov 05;19(21).
    PMID: 31694284 DOI: 10.3390/s19214813
    A developed colorimetric pH sensor film based on edible materials for real-time monitoring of food freshness is described. The mixed natural dyes from edible plants Clitoria sp and Brassica sp were extracted and incorporated into ι-carrageenan film as a colorimetric pH sensor film for monitoring food spoilage and its freshness. The color changes of the developed colorimetric sensor film were measured with chromametry and UV-vis spectroscopy, respectively. Experimental results show that colorimetric pH sensor film demonstrated statistically significant differences (p < 0.05) between CIE-L*a*b* coordinates color system indicated that the developed colorimetric sensor film was able to give a gradual change in color over a wide pH range. The color of the colorimetric sensor film also changes discretely and linearly with factors that contribute to food spoilage using shrimp and durian samples. Moreover, the developed colorimetric pH sensor film has the potential to be used as a safe, non-destructive testing and also a flexibly visual method for direct assessment of food freshness indicator during storage.
    Matched MeSH terms: Brassica/chemistry*
  15. Ravanfar SA, Aziz MA, Saud HM, Abdullah JO
    Curr Genet, 2015 Nov;61(4):653-63.
    PMID: 25986972 DOI: 10.1007/s00294-015-0494-x
    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.
    Matched MeSH terms: Brassica/drug effects; Brassica/genetics*; Brassica/metabolism; Brassica/microbiology
  16. Jaafaru MS, Abd Karim NA, Enas ME, Rollin P, Mazzon E, Abdull Razis AF
    Nutrients, 2018 May 08;10(5).
    PMID: 29738500 DOI: 10.3390/nu10050580
    Crucifer vegetables, Brassicaceae and other species of the order Brassicales, e.g., Moringaceae that are commonly consumed as spice and food, have been reported to have potential benefits for the treatment and prevention of several health disorders. Though epidemiologically inconclusive, investigations have shown that consumption of those vegetables may result in reducing and preventing the risks associated with neurodegenerative disease development and may also exert other biological protections in humans. The neuroprotective effects of these vegetables have been ascribed to their secondary metabolites, glucosinolates (GLs), and their related hydrolytic products, isothiocyanates (ITCs) that are largely investigated for their various medicinal effects. Extensive pre-clinical studies have revealed more than a few molecular mechanisms of action elucidating multiple biological effects of GLs hydrolytic products. This review summarizes the most significant and up-to-date in vitro and in vivo neuroprotective actions of sulforaphane (SFN), moringin (MG), phenethyl isothiocyanate (PEITC), 6-(methylsulfinyl) hexyl isothiocyanate (6-MSITC) and erucin (ER) in neurodegenerative diseases.
    Matched MeSH terms: Brassica/chemistry
  17. MyJurnal
    This study aims to determine the frequency and density of potentially pathogenic Vibrio parahaemolyticus, defined as those possessing thermostable-direct hemolysin (tdh) and/or tdh-related hemolysin (trh) genes, in raw salad vegetables at retail level in Selangor, Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of tdh and/or trh gene-possessing V. parahaemolyticus and to enumerate their density in the samples. A total of 276 samples of vegetables commonly eaten raw in Malaysia (Cabbage = 30; Carrot = 31; Cucumber = 28; Four winged bean = 26; Indian pennywort = 17; Japanese parsley = 21; Lettuce = 16; Long bean = 32; Sweet potato = 29; Tomato = 38; Wild cosmos = 8) were analyzed. The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). With the MPN-PCR technique, about 12.0% of the samples were positive for the presence of V. parahaemolyticus tdh-positive, with maximum densities of up to 39 MPN/g. The total frequency of V. parahaemolyticus trh-positive in the samples was 10.1%, with maximum concentration 15 MPN/g. V. parahaemolyticus tdh-positive was most prevalent in samples from Wet Market C (20.78%) and also in vegetable type Oenanthe stolonifera (Japanese parsley) with 19.0%, while V. parahaemolyticus trhpositive was predominant in samples from Wet Market D (16.7%) and was most frequent in both Oenanthe stolonifera (Japanese parsley) and Cucumis sativus (Cucumber) with 14.3% prevalence for each type. The results highlighted the fact that raw vegetables could be contaminated with virulent V. parahaemolyticus and could act as a transmission route, thus poses risk to consumers from the consumption of raw vegetables. To the author’s knowledge, this is the first assessment of V. parahaemolyticus carrying tdh and trh genes in raw
    vegetables from retail outlets in Malaysia.
    Matched MeSH terms: Brassica
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links