Displaying publications 41 - 60 of 139 in total

Abstract:
Sort:
  1. Arab A, Sktani ZDI, Zhou Q, Ahmad ZA, Chen P
    Materials (Basel), 2019 Jul 31;12(15).
    PMID: 31370216 DOI: 10.3390/ma12152440
    Zirconia toughened alumina (ZTA) is a promising advanced ceramic material for a wide range of applications that are subjected to dynamic loading. Therefore, the investigation of dynamic compressive strength, fracture toughness and hardness is essential for ZTA ceramics. However, the relationship between these mechanical properties in ZTA has not yet been established. An example of this relationship is demonstrated using ZTA samples added with MgO prepared through conventional sintering. The microstructure and mechanical properties of ZTA composites were characterized. The hardness of ZTA composites increased for ≤0.7 wt.% MgO due to the pinning effect of MgO and decrease of the porosity in the microstructure. Oppositely, the fracture toughness of ZTA composites continuously decreased due to the size reduction of Al2O3 grains. This is the main reason of deteriorate of dynamic compressive strength more than 0.2 wt.% of MgO addition. Therefore, the SHPB test shows the improvement of the dynamic compressive strength only up to a tiny amount (0.2 wt.% of MgO addition) into ZTA ceramics.
    Matched MeSH terms: Ceramics
  2. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Ceramics/chemistry*
  3. Nor Amyra Zulianey Kahlib, Farah Diana Mohd Daud, Ahmad Zahirani Ahmad Azhar, Noor Azlina Hassan, Maizirwan Mel
    MyJurnal
    Membrane technologies have received high interest in the separation gas mixture. The
    ceramic inorganic membranes have possessed high permeability, excellent thermal,
    chemical and mechanical stabilities compared to conventional polymer membranes.
    This work presents the fabrication of silica ceramic membrane by sol dip-coating
    method. The tubular support was dipped into the solution of tetrethylorthosilicate
    (TEOS), distilled water and ethanol with the addition of nitric acid as a catalyst. The
    fabricated silica membrane was then characterized by (Field Emission Scanning
    Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to
    determine structural and chemical properties at different dipping number. FESEM
    images indicate that the silica has been deposited on the surface fabricated ceramic
    membrane and penetrate into the pore walls. However, number of dipping did not
    affect the intensity peak of FTIR analysis.
    Matched MeSH terms: Ceramics
  4. Abdullahi A, Choudhury I, Azuddin M, Nahar N
    Sains Malaysiana, 2017;46:477-483.
    A suitable and cost-effective microfabrication technique for processing aluminum micropart is required, as the choice
    of aluminum microparts for aerospace, electronics and automobile components is preferred over other metals due to its
    excellent properties. Meanwhile, powder injection molding (PIM) is identified as an economical manufacturing technique
    for processing ceramic and micro-metal powders into microparts and or components. Therefore, this study investigates
    formulation and processing of aluminum PIM feedstock using a custom-made machine. The investigation is focused on
    the effect of mixing process parameters (powder loading, rotor speed and mixing temperature) and the suitability of
    the backbone polymer. The formulated PIM feedstock constituents are paraffin wax (PW), stearic acid (SA), high-density
    polyethylene (HDPE)/ medium-density polyethylene (MDPE) alternatively and aluminum micro-metal powder. Taguchi
    method is used for the design of experiments (DOEs) and analysis. In addition, response surface methodology (RSM) is
    employed to develop empirical viscosity models. The optimum powder-binder mixing ratio of 58:42 vol. % with rotor
    speed of 43 rpm were determined for preparing aluminum PIM feedstock using mini-lab mixer developed. The empirical
    model developed for aluminum PIM feedstock viscosity shows a good fit with R2
    values of 0.84 using HDPE and 0.96 for
    MDPE binder system. This investigation demonstrates preparation and suitability of aluminum PIM feedstock using waxbased
    binder system.
    Matched MeSH terms: Ceramics
  5. Teng WS, Yew HZ, Jamadon NH, Qamaruz Zaman J, Meor Ahmad MI, Muchtar A
    J Mech Behav Biomed Mater, 2024 Mar;151:106361.
    PMID: 38176199 DOI: 10.1016/j.jmbbm.2023.106361
    The use of all porcelain materials in dentistry has significantly increased in recent years. However, chipping has remained a common problem that affects bilayered zirconia restorations. Bonding between porcelain and the underlying zirconia framework is crucial to the success of the restoration. The bond strength may be affected by such factors as residual thermal stress and the veneering technique. This research focuses on investigating the potential and constraints of materials through an examination of the porcelain veneering technique, particularly hand-layering and heat-pressing. Forty-two cylindrical disc samples of zirconia (n = 7/group) were fabricated in the dimensions of 10 × 1.2 mm (diameter [D] × height [H]). The zirconia specimens were milled from IPS e.max® ZirCad [Z] block and Luxen Zr [L] block (n = 21/zirconia). The zirconia cores were layered with IPS e.max® Zirliner and heat-pressed with IPS e.max® ZirPress to produce a final veneer dimension of 5 × 3 mm (D × H). Conventional layering was performed for the rest of the zirconia cores using IPS e.max® Ceram and Shofu Vintage Zr. The final study groups were Luxen-Vintage (LV), Luxen-Ceram (LC), Luxen Zirpress (LP), ZirCad-Vintage (ZV), ZirCad-Ceram (ZC) and ZirCad-Zirpress (ZP). Five samples were subjected to shear bond testing (SBS) with a universal testing machine with a 5 kN load cell and 0.5 mm/min crosshead speed (n = 5/group). A sample underwent nanoindentation, and another was sectioned using Isomet machine to study the bonding interface. One-way ANOVA was used to run the statistical analyses of the SBS test. Statistical differences were found between ZV with LC and LP (p 
    Matched MeSH terms: Ceramics/chemistry
  6. Caglar I, Ates SM, Boztoprak Y, Aslan YU, Duymus ZY
    Niger J Clin Pract, 2018 Aug;21(8):1000-1007.
    PMID: 30074001 DOI: 10.4103/njcp.njcp_300_17
    Objective: The aim of this study was to investigate the different surface treatments on the bond strength of self-adhesive resin cement to high-strength ceramic.

    Materials and Methods: Ninety aluminum oxide ceramic (Turkom-Ceramic Sdn. Bhd., Kuala Lumpur, Malaysia) specimens were produced and divided into nine groups to receive the following surface treatments: control group, no treatment (Group C), sandblasting (Group B), silica coating (Group S), erbium: yttrium-aluminum-garnet (Er:YAG) laser irradiation at 150 mJ 10 Hz (Group L1), Er:YAG laser irradiation at 300 mJ 10 Hz (Group L2), sandblasting + L1 (Group BL1), sandblasting + L2 (Group BL2), silica coating + L1 (Group SL1), and silica coating + L2 (Group SL2). After surface treatments, surface roughness (SR) values were measured and surface topography was evaluated. Resin cement was applied on the specimen surface, and shear bond strength (SBS) tests were performed. Data were statistically analyzed using one-way ANOVA and Tukey's multiple comparisons at a significance level of P < 0.05.

    Results: Group S, SL1, and SL2 showed significantly increased SR values compared to the control group (P < 0.05); therefore, no significant differences were found among the SR values of Groups B, BL1, BL2, L1, and L2 and the control group (P > 0.05). Group S showed the highest SBS values, whereas the control group showed the lowest SBS values.

    Conclusion: Silica coating is the most effective method for resin bonding of high strength ceramic, but Er:YAG laser application decreased the effectiveness.

    Matched MeSH terms: Ceramics/chemistry*
  7. Hutagalung SD, Ying OL, Ahmad ZA
    PMID: 18276560 DOI: 10.1109/TUFFC.2007.582
    This paper presents the effects of calcination time and sintering temperature on the properties of CaCu(3)Ti(4)O(12). Electroceramic material of CaCu(3)Ti(4)O(12) was prepared using a modified mechanical alloying technique that covers several processes, which are preparation of raw material, mixing and ball milling for 5 hours, calcination, pellet forming and, sintering. The objective of this modified technique is to enable the calcination and sintering processes to be carried out at a shorter time and lower temperature. The x-ray diffraction (XRD) analysis result shows that a single-phase of CaCu(3)Ti(4)O(12) was completely formed by calcination at 750 degrees C for 12 hours. Meanwhile, the grain size of a sample sintered at 1050 degrees C for 24 hours is extremely large, in the range of 20-50 mum obtained from field emission scanning electron microscopy (FESEM) images. The dielectric constant value of 14,635 was obtained at 10 kHz by impedance (LCR) meter in the sintered sample at 1050 degrees C. However, the dielectric constant value of samples sintered at 900 and 950 degrees C is quite low, in the range of 52-119.
    Matched MeSH terms: Ceramics/chemistry*
  8. Mohd Al Amin Muhamad Nor, Lee, Chain Hong, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Ceramic foams are a class of high porosity materials that are used or being considered for a wide range of technological applications. Ceramic foam was produce by polymer replication method. In this process, commercial polymeric sponge was use as template, dipping with ceramic particles slurry, drying and then sintered to yield a replica of the original foams. The study was focus on the fabrication of different density of ceramic foams by varying the density of ceramic slurries (1.1876, 1.2687, 1.3653 and 1.5295 g/cm3). Properties of ceramic foam produced such as density was characterized accordingly to ASTM C 271-94 and porosity were characterized using Archimedes methods. Compressive and bending strength was performed accordingly to ASTM C1161-94 and C773-88 (1999), respectively. The morphological study was performed using Scanning Electron Microscopy (SEM) and EDX. Density of ceramic foams produced was about 0.5588 and 1.1852 g/cm3, where as porosity was around 26.28 and 70.59 %. Compressive and bending strength was increase from strength also increases from 2.60 to 23.07 MPa and 1.20 to 11.10 MPa, respectively, with increasing of slurries density from 1.1876 to 1.3653 g/cm3. The SEM micrographs show that the cells structure become denser as the slurries density increased. EDX proved that the ceramic used is porcelain. As a conclusion, increasing in slurries density produced ceramic foams with good mechanical properties such as compressive and bending strength and denser body.
    Matched MeSH terms: Ceramics
  9. Farrahshaida Mohd Salleh, Abu Bakar Sulong, Muhammad Rafi Raza, Norhamidi Muhamad, Lim TF
    Sains Malaysiana, 2017;46:1651-1657.
    owder injection molding (PIM) is able to produce porous titanium alloy/hydroxyapatite composite through the space holder technique. Thermal debinding and sintering processes were the main challenges due to different properties of metal and ceramic in producing such composite. This study focused on the effect of different space holders on the physical and mechanical properties of debound and sintered porous titanium aloi/hydroxyapatite composite. The feedstock is containing of 80 wt. % of titanium alloy/hydroxyapatite with 20 wt. % of space holders such as sodium chloride (NaCl) and polymethylmethacrylate (PMMA), respectively. The binders were then removed from the injected samples by two stages of debinding; solvent and thermal debinding. The sintering was performed at three different temperatures 1100oC, 1200oC and 1300oC at a heating rate of 10oC /min and holding time of 5 h. It was found that the samples containing PMMA space holder was fractured after sintering. While, the samples containing NaCl space holder successfully formed pores and not fractured. At sintering temperature of 1300oC, the density, compressive strength and porosity volume percentages for the sintered sample containing NaCl space holder were 3.05 g/cm3, 91.7 MPa. and 11.9 vol%, respectively.
    Matched MeSH terms: Ceramics
  10. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Ceramics
  11. Cik Rohaida, C.H., Idris, B., Rusnah, M., Mohd Reusmaazran, Y., Narimah, A.B.
    MyJurnal
    Phase composition of calcium phosphate ceramic is a characteristic directly related to the biological response of implants due to the differences in mechanical and biochemical properties of these compounds. The biodegradation rate of biphasic calcium phosphate (BCP) can be controlled by altering the HA to β-TCP ratios. In this study the crystalline phase evolution of BCP synthesized via precipitation from aqueous solution of (NH4)2PO4 titrated into heated solution of Ca (NO3)2 was evaluated. The resulting powder was fabricated into porous scaffold using polyurethane foam method. Bulk powders were sintered from 700 - 1400°C to determine the most significant sintering temperature to obtain a stable and well crystallize BCP phases. The porous scaffolds were then sintered at selected temperature and the effects of various sintering times from 5,7,9,11,13 and 15 h were investigated. Bulk powders were characterized by dilatometer, IR analysis and XRD and porous scaffolds were analyzed by XRD and SEMEdx. RIR method was performed to show that the HA to β-TCP ratios were increased with increasing of sintering time and reached the maximum HA value at 11h. It is found that, the possibilities to manipulate the HA to β-TCP ratios in BCP porous scaffold by just controlling the sintering time of the scaffold without controlling the starting powder characteristics.
    Matched MeSH terms: Ceramics
  12. Walle KZ, Musuvadhi Babulal L, Wu SH, Chien WC, Jose R, Lue SJ, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):2507-2520.
    PMID: 33406841 DOI: 10.1021/acsami.0c17422
    Although solid-state Li-metal batteries (LMBs) featuring polymer-based solid electrolytes might one day replace conventional Li-ion batteries, the poor Li-ion conductivity of solid polymer electrolytes at low temperatures has hindered their practical applications. Herein, we describe the first example of using a co-precipitation method in a Taylor flow reactor to produce the metal hydroxides of both the Ga/F dual-doped Li7La3Zr2O12 (Ga/F-LLZO) ceramic electrolyte precursors and the Li2MoO4-modified Ni0.8Co0.1Mn0.1O2 (LMO@T-LNCM 811) cathode materials for LMBs. The Li/Nafion (LiNf)-coated Ga/F-LLZO (LiNf@Ga/F-LLZO) ceramic filler was finely dispersed in the poly(vinylidene fluoride)/polyacrylonitrile/lithium bis(trifluoromethanesulfonimide)/succinonitrile matrix to give a trilayer composite polymer electrolyte (denoted "Tri-CPE") through a simple solution-casting. The bulk ionic conductivity of the Tri-CPE at room temperature was approximately 4.50 × 10-4 S cm-1 and exhibited a high Li+ ion transference number (0.84). It also exhibits a broader electrochemical window of 1-5.04 V versus Li/Li+. A full cell based on a CR2032 coin cell containing the LMO@T-LNCM811-based composite cathode, when cycled under 1 C/1 C at room temperature for 300 cycles, achieved an average Columbic efficiency of 99.4% and a capacity retention of 89.8%. This novel fabrication strategy for Tri-CPE structures has potential applications in the preparation of highly safe high-voltage cathodes for solid-state LMBs.
    Matched MeSH terms: Ceramics
  13. Nur Azam Badarulzaman, Ng, Jun Wei, Ahmad Azmin Mohamad, Purwadaria, Sunara, Zainal Arifin Ahmad
    MyJurnal
    A co-deposition of nickel-phosphorus-alumina (NiPA) composite coatings were obtained from an ordinary sulphate-based plating bath consisting of 5 g/l alumina (Al2O3) particles. The particles were dispersed by using mechanical agitation at 125 rpm. The presence of Ni3P and Al2O3 phases in the coatings was confirmed by XRD analysis. SEM/EDX results indicated that a smooth Ni3P coating was obtained and Al2O3 particles were embedded into the coating. Microscopic observation showed that the bonding between the Ni3P metal matrix and the Al2O3 ceramic particles was compact.
    Matched MeSH terms: Ceramics
  14. Fayyaz O, Khan A, Shakoor RA, Hasan A, Yusuf MM, Montemor MF, et al.
    Sci Rep, 2021 Mar 05;11(1):5327.
    PMID: 33674680 DOI: 10.1038/s41598-021-84716-6
    In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni-P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L-1) were co-electrodeposited in the Ni-P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV100) at the concentration of 1.5 g L-1. Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni-P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L-1, which can be ascribed to a reduction in the active area of the Ni-P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni-P-TiC composite coatings suggest their potential applications in many industrial applications.
    Matched MeSH terms: Ceramics
  15. Abdullah AM, Mohamad D, Rahim TNAT, Akil HM, Rajion ZA
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:719-725.
    PMID: 30889745 DOI: 10.1016/j.msec.2019.02.007
    This study reports the influence of ZrO2/β-TCP hybridization on the thermal, mechanical, and physical properties of polyamide 12 composites to be suited for bone replacement. Amount of 15 wt% of nano-ZrO2 along with 5,10,15,20 and 25 wt% of micro-β-TCP was compounded with polyamide 12 via a twin-screw extruder. The hybrid ZrO2/β-TCP filled polyamide 12 exhibited higher thermal, mechanical and physical properties in comparison to unfilled polyamide 12 at certain filler loading; which is attributed to the homogenous dispersion of ZrO2/β-TCP fillers particle in polyamide 12 matrix. The hybrid ZrO2/β-TCP filled PA 12 demonstrated an increment of tensile strength by up to 1%, tensile modulus of 38%, flexural strength of 15%, flexural modulus of 45%, and surface roughness value of 93%, as compared to unfilled PA 12. With enhanced thermal, mechanical and physical properties, the newly developed hybrid ZrO2/β-TCP filled PA 12 could be potentially utilized for bone replacement.
    Matched MeSH terms: Ceramics/chemistry*
  16. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Ceramics
  17. Koh KH, Sreekumar M, Ponnambalam SG
    Materials (Basel), 2014 Jun 25;7(7):4963-4981.
    PMID: 28788114 DOI: 10.3390/ma7074963
    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.
    Matched MeSH terms: Ceramics
  18. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Ceramics/chemistry*
  19. Yusof MSM, Othman MHD, Mustafa A, Rahman MA, Jaafar J, Ismail AF
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21644-21655.
    PMID: 29785602 DOI: 10.1007/s11356-018-2286-6
    Palm oil fuel ash (POFA) is an agricultural waste which was employed in this study to produce novel adsorptive ceramic hollow fibre membranes. The membranes were fabricated using phase inversion-based extrusion technique and sintered at 1150 °C. The membranes were then evaluated on their ability to adsorb cadmium (Cd(II)). These membranes were characterised using (nitrogen) N2 adsorption-desorption analysis, field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX) mapping, X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses while adsorptivity activity was examined by batch adsorption studies. The adsorption test results show that the quantity of hollow fibre used and water pH level significantly affected the adsorption performance with the 3-fibre membrane yielding 96.4% Cd(II) removal in 30 min equilibrium time at pH 7. These results are comparable to those reported by other studies, and hence demonstrate a promising alternative of low-cost hollow fibre adsorbent membrane. Graphical abstract Figure of FESEM image of the hollow fibre, proposed mechanism and the graph of percentage removal of Cd(II) using POFA.
    Matched MeSH terms: Ceramics
  20. Radzali, O., Zaleha, M., Nor Fatiha, I., Ooi, C.H.
    MyJurnal
    Glass-ceramics are a group of materials that takes advantage of the various glass-forming methods before they are subsequently heat-treated in a controlled manner to effect nucleation and crystallization to produce crystalline materials. The production of glassceramic materials is to overcome the low mechanical strength in pure glassy materials. In this work, a study on the crystallisation of a soda-lime-silica glass was undertaken to ascertain how the processing parameters affect the crystallization of such glasses, viz. either via a single or two-step heat-treatment procedure, as well as the effect of soaking duration at the heat-treatment temperature. A soda-lime-silica glass system was chosen because the raw materials for producing such glasses are readily available and can be considered to be the cheapest. The glass produced was examined by thermal analysis to determine the nucleation and crystallization temperatures before they were heat-treated using a single-step and a two-stage heat-treatment procedures. The resultant glassceramics produced were characterized using x-ray diffraction as well as by scanning electron microscopy. The results thus obtained showed that a two-stage heat-treatment procedure is more successful in producing a well-crystallized glass-ceramic product.
    Matched MeSH terms: Ceramics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links