Displaying publications 41 - 60 of 327 in total

Abstract:
Sort:
  1. Yang Y, Foong SY, He Y, Liew RK, Ma NL, Yek PNY, et al.
    Environ Res, 2024 May 01;248:118282.
    PMID: 38295974 DOI: 10.1016/j.envres.2024.118282
    The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.
    Matched MeSH terms: Charcoal*
  2. Gopalan J, Buthiyappan A, Rashidi NA, Sufian S, Abdul Raman AA
    Environ Sci Pollut Res Int, 2024 Jul;31(33):45887-45912.
    PMID: 38980479 DOI: 10.1007/s11356-024-34173-1
    This study investigates the synthesize of activated carbon for carbon dioxide adsorption using palm kernel shell (PKS), a by-product of oil palm industry. The adsorbent synthesis involved a simple two-step carbonization method. Firstly, PKS was activated with potassium oxide (KOH), followed by functionalization with magnesium oxide (MgO). Surface analysis revealed that KOH activated PKS has resulted in a high specific surface area of 1086 m2/g compared to untreated PKS (435 m2/g). However, impregnation of MgO resulted in the reduction of surface area due to blockage of pores by MgO. Thermogravimetric analysis (TGA) demonstrated that PKS-based adsorbents exhibited minimal weight loss of less than 30% up to 500 °C, indicating their suitability for high-temperature applications. CO2 adsorption experiments revealed that PKS-AC-MgO has achieved a higher adsorption capacity of 155.35 mg/g compared to PKS-AC (149.63 mg/g) at 25 °C and 5 bars. The adsorption behaviour of PKS-AC-MgO was well fitted by both the Sips and Langmuir isotherms, suggesting a combination of both heterogeneous and homogeneous adsorption and indicating a chemical reaction between MgO and CO2. Thermodynamic analysis indicated a spontaneous and thermodynamically favourable process for CO2 capture by PKS-AC-MgO, with negative change in enthalpy (- 0.21 kJ/mol), positive change in entropy (2.44 kJ/mol), and negative change in Gibbs free energy (- 729.61 J/mol, - 790.79 J/mol, and - 851.98 J/mol) across tested temperature. Economic assessment revealed that the cost of PKS-AC-MgO is 21% lower than the current market price of commercial activated carbon, indicating its potential for industrial application. Environmental assessment shows a significant reduction in greenhouse gas emissions (381.9 tCO2) through the utilization of PKS-AC-MgO, underscoring its environmental benefits. In summary, the use of activated carbon produced from PKS and functionalised with MgO shows great potential for absorbing CO2. This aligns with the ideas of a circular economy and sustainable development.
    Matched MeSH terms: Charcoal/chemistry
  3. Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS
    Waste Manag Res, 2014 Apr;32(4):331-9.
    PMID: 24643171 DOI: 10.1177/0734242X14525822
    Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
    Matched MeSH terms: Charcoal/analysis; Charcoal/chemistry*
  4. Idris J, Shirai Y, Andou Y, Mohd Ali AA, Othman MR, Ibrahim I, et al.
    Waste Manag Res, 2016 Feb;34(2):176-80.
    PMID: 26612557 DOI: 10.1177/0734242X15616472
    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.
    Matched MeSH terms: Charcoal/analysis*
  5. Ramachandra SS, Dicksit DD, Gundavarapu KC
    Br Dent J, 2014 Jul 11;217(1):3.
    PMID: 25012309 DOI: 10.1038/sj.bdj.2014.557
    Matched MeSH terms: Charcoal/therapeutic use*
  6. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2014;2014:506356.
    PMID: 25032229 DOI: 10.1155/2014/506356
    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.
    Matched MeSH terms: Charcoal/chemistry*
  7. Ng SL, Seng CE, Lim PE
    Chemosphere, 2010 Jan;78(5):510-6.
    PMID: 20035966 DOI: 10.1016/j.chemosphere.2009.11.041
    A kinetic model consisting of first-order desorption and biodegradation processes was developed to describe the bioregeneration of phenol- and p-nitrophenol-loaded powdered activated carbon (PAC) and pyrolyzed rice husk (PRH), respectively. Different dosages of PAC and PRH were loaded with phenol or p-nitrophenol by contacting with the respective phenolic compound at various concentrations. The kinetic model was used to fit the phenol or p-nitrophenol concentration data in the bulk solution during the bioregeneration process to determine the rate constants of desorption, k(d), and biodegradation, k. The results showed that the kinetic model fitted relatively well (R(2)>0.9) to the experimental data for the phenol- and p-nitrophenol-loaded PAC as well as p-nitrophenol-loaded PRH. Comparison of the values of k(d) and k shows that k is much greater than k(d). This indicates clearly that the desorption process is the rate-determining step in bioregeneration and k(d) can be used to characterize the rate of bioregeneration. The trend of the variation of the k(d) values with the dosages of PAC or PRH used suggests that higher rate of bioregeneration can be achieved under non-excess adsorbent dosage condition.
    Matched MeSH terms: Charcoal/chemistry*
  8. Loo WW, Pang YL, Lim S, Wong KH, Lai CW, Abdullah AZ
    Chemosphere, 2021 Jun;272:129588.
    PMID: 33482519 DOI: 10.1016/j.chemosphere.2021.129588
    Iron-doped titanium dioxide loaded on activated carbon (Fe-TiO2/AC) was successfully synthesized from oil palm empty fruit bunch (OPEFB) using sol-gel method. The properties of the synthesized pure TiO2, Fe-doped TiO2, AC, TiO2/AC and Fe-TiO2/AC were examined by various techniques such as field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and nitrogen adsorption-desorption analyses at 77 K. FE-SEM revealed that Fe-doped TiO2 particles were dispersed homogeneously on the AC surface. FT-IR demonstrated high surface hydroxylation after Fe doping on TiO2 and UV-Vis DRS showed that Fe-TiO2/AC had the lowest band gap energy. Catalytic performance results proved that Fe dopants could restrict the recombination rate of hole and electron pairs, whereas AC support improved the Malachite Green (MG) adsorption sites and active sites of the hybrid catalyst. Photocatalytic degradation of 100 mg/L MG in the presence of 1.0 g/L 15 wt% Fe-TiO2 incorporated with 25 wt% AC, initial solution pH of 4 and 3 mM H2O2 could achieve the highest removal efficiency of 97% after 45 min light irradiation. This work demonstrates a promising approach to synthesis an inexpensive and efficient Fe-TiO2/AC for the photocatalytic degradation of organic dye.
    Matched MeSH terms: Charcoal*
  9. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, et al.
    J Hazard Mater, 2020 05 15;390:121649.
    PMID: 31753673 DOI: 10.1016/j.jhazmat.2019.121649
    Improving the sustainability and cost-effectiveness of biochar production is crucial to meet increased global market demand. Here, we developed a single-step microwave steam activation (STMSA) as a simplified yet efficient method to produce microwave activated biochar (MAB) from waste palm shell (WPS). The STMSA recorded a higher heating rate (70 °C/min) and higher conversion (45 wt%) of WPS into highly microporous MAB (micropore surface area of 679.22 m2/g) in contrast with the conventional heating approach (≤ 12-17 wt%). The MAB was then applied as biosorbent for hazardous landfill leachate (LL) treatment and the adsorption performance was compared with commercial activated carbon under different pH, adsorbent quantity, adsorbate concentrations, and contact times. The MAB demonstrated high adsorption capacity, achieving maximum adsorption efficiency at 595 mg/g and 65 % removal of chemical oxygen demand (COD) with 0.4 g/L of adsorbent amount under optimal acidic conditions (pH ≈ 2-3) after 24 h of contact time. The Freundlich isotherm and pseudo second-order kinetic models were well-fitted to explain the equilibrium adsorption and kinetics. The results indicate the viability of STMSA as a fast and efficient approach to produce activated biochar as a biosorbent for the treatment of hazardous landfill leachate.
    Matched MeSH terms: Charcoal/chemistry*
  10. Lim S, Yap CY, Pang YL, Wong KH
    J Hazard Mater, 2020 05 15;390:121532.
    PMID: 31843399 DOI: 10.1016/j.jhazmat.2019.121532
    In this research, biomass from oil palm empty fruit bunch was used as the carbon precursor and sulfonated by 4-benzenediazonium sulfonate (4-BDS) to produce solid acid catalyst. The as-synthesized catalysts were characterized and the performances were tested in esterification of palm fatty acid distillate (PFAD) for biodiesel production. Scanning Electron Microscopy (SEM) showed that clear porous and rough carbon surface was successfully developed after calcination which favored the attachment of sulfonic groups. Thermogravimetric Analysis (TGA) result showed that the catalyst was thermally stable up to 600 °C. Fourier Transform Infrared Spectroscopy (FTIR) proved that SO and SO3H sulfonic groups were successfully attached to the carbon catalyst. From the catalytic activity tests, the results showed that the catalyst which was calcined at 200 °C and sulfonated with 15:1 sulfanilic acid to AC ratio was the optimum catalyst as it provided the highest biodiesel yield. Further investigation showed that the reaction time of 7 h and 20 wt.% of catalyst loading were reported as optimum esterification conditions which provided the highest biodiesel yield at 98.1 %.
    Matched MeSH terms: Charcoal*
  11. Omar AH, Muda K, Majid ZA, Affam AC, Ezechi EH
    Water Environ Res, 2020 Jan;92(1):73-83.
    PMID: 31276251 DOI: 10.1002/wer.1177
    Biogranulation is an effective biological technology suitable for the treatment of various wastewaters. However, the major drawback of this technique is the long start-up period for biogranule development. Hence, the primary focus of this study was on cell surface hydrophobicity which is the main parameter that indicates cell agglomeration during the initial self-immobilization process of aerobic granulation. The effects of sludge concentration and magnetic activated carbon on cell surface hydrophobicity were investigated in this study. Response surface methodology (RSM) was applied to design, analyze, and optimize the outcome of the study. Experiments were performed at sludge concentration of 1,000-3,000 mg/L and magnetic activated carbon mass of 1-5 g/L with 24 hr of aeration time. The results show that both variables yielded a positive significant effect on the initial development of aerobic granulation with 56% surface hydrophobicity. Interaction effects between variables on the responses were significant with positive estimated interaction effect at all different measured aeration time. The magnetic activated carbon acted as nuclei to induce bacterial attachment and further enhanced the initial process of biogranule development under optimal condition of 1:1.1 (sludge concentration: magnetic activated carbon). PRACTITIONER POINTS: Cell surface hydrophobicity was evaluated Magnetic activated carbon enhanced cell surface hydrophobicity Response surface methodology was employed for analyses Magnetic activate carbon mass and biomass concentration was significant Magnetic activated carbon acted as nuclei to improve biogranulation.
    Matched MeSH terms: Charcoal*
  12. Abed KM, Hayyan A, Elgharbawy AAM, Hizaddin HF, Hashim MA, Hasan HA, et al.
    Molecules, 2022 Dec 09;27(24).
    PMID: 36557866 DOI: 10.3390/molecules27248734
    This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
    Matched MeSH terms: Charcoal*
  13. Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, et al.
    Environ Pollut, 2023 Jan 15;317:120790.
    PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790
    This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
    Matched MeSH terms: Charcoal/pharmacology
  14. Iberahim N, Sethupathi S, Bashir MJK
    Environ Sci Pollut Res Int, 2018 Sep;25(26):25702-25714.
    PMID: 28550632 DOI: 10.1007/s11356-017-9180-5
    In this study, palm oil mill sludge was used as a precursor to prepare biochar using conventional pyrolysis. Palm oil mill sludge biochar (POSB) was prepared at different preparation variables, i.e., heating temperature (300-800 °C), heating rate (10-20 °C/min) and holding time (60-120 min). The prepared biochars were tested for sulfur dioxide (SO2) adsorption in a fixed bed reactor using 300 ppm of SO2 gas at 300 ml/min (with N2 gas as balance). Response surface central composite experimental design was used to optimize the production of biochar versus SO2 removal. A quadratic model was developed in order to correlate the effect of variable parameters on the optimum adsorption capacity of SO2 gas. The experimental values and the predicted results of the model were found to show satisfactory agreement. The optimum conditions for biochar preparation to yield the best SO2 removal was found to be at 405 °C of heating temperature, 20 °C/min of heating rate and 88 min of holding time. At these conditions, the average yield of biochar and adsorption capacity for SO2 gas was reported as 54.25 g and 9.75 mg/g, respectively. The structure of biochar and their roles in SO2 adsorption were investigated by surface area, morphology images, infrared spectra, and proximate analysis, respectively. The characterization findings suggested that POSB adsorbs SO2 mainly by the functional groups.
    Matched MeSH terms: Charcoal*
  15. Hossain MA, Ganesan PB, Sandaran SC, Rozali SB, Krishnasamy S
    Environ Sci Pollut Res Int, 2017 Dec;24(34):26521-26533.
    PMID: 28948458 DOI: 10.1007/s11356-017-0241-6
    Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na2CO3) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N2 flow rates ranges from 200 to -1200 cm3/min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N2 flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na2CO3 to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N2 flow rate of 200 cm3/min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.
    Matched MeSH terms: Charcoal/chemistry*
  16. Leong KY, Adnan R, Lim PE, Ng SL, Seng CE
    Environ Sci Pollut Res Int, 2017 Sep;24(26):20959-20971.
    PMID: 28726220 DOI: 10.1007/s11356-017-9636-7
    The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.
    Matched MeSH terms: Charcoal*
  17. Yavari S, Malakahmad A, Sapari NB
    Environ Sci Pollut Res Int, 2015 Sep;22(18):13824-41.
    PMID: 26250816 DOI: 10.1007/s11356-015-5114-2
    Biochar is a stabilized, carbon-rich by-product derived from pyrolysis of biomass. Recently, biochar has received extensive attentions because of its multi-functionality for agricultural and environmental applications. Biochar can contribute to sequestration of atmosphere carbon, improvement of soils quality, and mitigation of environmental contaminations. The capability of biochar for specific application is determined by its properties which are predominantly controlled by source material and pyrolysis route variables. The biochar sorption potential is a function of its surface area, pores volume, ash contents, and functional groups. The impacts of each production factors on these characteristics of biochar need to be well-understood to design efficient biochars for pesticides removal. The effects of biomass type on biochar sorptive properties are determined by relative amounts of its lingo-cellulosic compounds, minerals content, particles size, and structure. The highest treatment temperature is the most effective pyrolysis factor in the determination of biochar sorption behavior. The expansion of micro-porosity and surface area and also increase of biochar organic carbon content and hydrophobicity mostly happen by pyrolysis peak temperature rise. These changes make biochar suitable for immobilization of organic contaminants. Heating rate, gas pressure, and reaction retention time after the pyrolysis temperatures are sequentially important pyrolysis variables effective on biochar sorptive properties. This review compiles the available knowledge about the impacts of production variables on biochars sorptive properties and discusses the aging process as the main factor in post-pyrolysis alterations of biochars sorption capacity. The drawbacks of biochar application in the environment are summarized as well in the last section.
    Matched MeSH terms: Charcoal/chemistry*
  18. Yousef TA, Sahu UK, Jawad AH, Abd Malek NN, Al Duaij OK, ALOthman ZA
    Int J Phytoremediation, 2023;25(9):1142-1154.
    PMID: 36305491 DOI: 10.1080/15226514.2022.2137102
    A low-cost fruit waste namely watermelon peel (WMP) was utilized as a promising precursor for the preparation of mesoporous activated carbon (WMP-AC) via microwave assisted-K2CO3 activation. The WMP-AC was applied as an adsorbent for methylene blue dye (MB) removal. Several types of characterizations, such as specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Elemental Analysis (CHNS/O), and Fourier Transform Infrared Spectroscopy (FTIR) were used to identify the physicochemical properties of WMP-AC. Furthermore, Box-Behnken design (BBD) was applied to optimize the influence of the adsorption operational variables (contact time, adsorbent dose, working temperature, and solution pH) on MB dye adsorption. Thus, based on significant interactions, the optimum BBD output shows the best removal of 50 mg·L-1 MB (92%) was recorded at an adsorbent dose of 0.056 g, contact time of 4.4 min, working temperature of 39 °C, and solution pH 8.4. The Langmuir uptake capacity of WMP-AC was found to be 312.8 mg·g-1, with the best fitness to the pseudo-second-order kinetics model and an endothermic adsorption process. The adsorption mechanisms of MB by WMP-AC can be assigned to the hydrogen bonding, electrostatic attraction, and π-π stacking. The findings of this study indicate that WMP is a promising precursor for producing porous activated carbon for MB dye removal.
    Matched MeSH terms: Charcoal/chemistry
  19. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
    Matched MeSH terms: Charcoal*
  20. Sahu JN, Dhaouadi F, Sellaoui L, Khor LX, Lee SY, Daud WMAW, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(19):27980-27987.
    PMID: 38526713 DOI: 10.1007/s11356-024-33002-9
    The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.
    Matched MeSH terms: Charcoal/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links