Displaying publications 41 - 60 of 326 in total

Abstract:
Sort:
  1. Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, et al.
    OMICS, 2018 12;22(12):759-769.
    PMID: 30571610 DOI: 10.1089/omi.2018.0160
    The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
    Matched MeSH terms: Chromatography, Liquid
  2. Chomérat N, Bilien G, Viallon J, Hervé F, Réveillon D, Henry K, et al.
    Harmful Algae, 2020 09;98:101888.
    PMID: 33129466 DOI: 10.1016/j.hal.2020.101888
    Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.
    Matched MeSH terms: Chromatography, Liquid
  3. Rahmani A, Jinap S, Soleimany F
    Compr Rev Food Sci Food Saf, 2009 Jul;8(3):202-251.
    PMID: 33467794 DOI: 10.1111/j.1541-4337.2009.00079.x
      Mycotoxin toxicity occurs at very low concentrations, therefore sensitive and reliable methods for their detection are required. Consequently, sampling and analysis of mycotoxins is of critical importance because failure to achieve a suitable verified analysis can lead to unacceptable consignments being accepted or satisfactory shipments unnecessarily rejected. The general mycotoxin analyses carried out in laboratories are still based on physicochemical methods, which are continually improved. Further research in mycotoxin analysis has been established in such techniques as screening methods with TLC, GC, HPLC, and LC-MS. In some areas of mycotoxin method development, immunoaffinity columns and multifunctional columns are good choices as cleanup methods. They are appropriate to displace conventional liquid-liquid partitioning or column chromatography cleanup. On the other hand, the need for rapid yes/no decisions for exported or imported products has led to a number of new screening methods, mainly, rapid and easy-to-use test kits based on immuno-analytical principles. In view of the fact that analytical methods for detecting mycotoxins have become more prevalent, sensitive, and specific, surveillance of foods for mycotoxin contamination has become more commonplace. Reliability of methods and well-defined performance characteristics are essential for method validation. This article covers some of the latest activities and progress in qualitative and quantitative mycotoxin analysis.
    Matched MeSH terms: Chromatography, Liquid
  4. Sari E, Mahira KF, Patel DN, Chua LS, Pratami DK, Sahlan M
    Heliyon, 2021 May;7(5):e06912.
    PMID: 34013079 DOI: 10.1016/j.heliyon.2021.e06912
    Royal jellies (RJs) possess moisturizing, emulsifying, and stabilizing properties, and several pharmacological activities have also been found to be present, which make them an ideal component for cosmetic and skin care products. However, despite the abundant efficacies, there is a lack of studies that explore the chemical composition of RJ using metabolome analysis. Furthermore, an evaluation of the chemical composition of Indonesian RJs collected from different regions has yet to be carried out. Therefore, the main objective of this study was to identify any differences in the chemical composition of such RJs. Chemical profiling was also carried out to enable more targeted utilization based on the actual compositions. Chemical profiling is also important given the rich Indonesian biodiversity and the high dependence of the RJ compositions on the botanical source. In this research, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used as part of an untargeted metabolomics approach. From the chemical profiling, >30 compounds were identified across four RJ samples. The major constituents of the samples were found to be oligosaccharides, fatty acids, and adenosine monophosphate derivatives. Meanwhile, sucrose and planteose were found to be highest in the samples from Banjarnegara and Kediri, whereas dimethyloctanoic acid was found to be unique to the sample from Banjarnegara. It was also discovered that the RJs from Demak and Tuban contained more organic fatty acids and oligosaccharides than the other samples. Although the sample from Demak demonstrated good potential for use in the cosmetic, skin care, and bio-supplement industries, the higher abundance of fatty acids and oligosaccharides in the sample from Tuban indicated that it is perhaps the most suitable RJ for use in this field.
    Matched MeSH terms: Chromatography, Liquid
  5. Azmi N, Othman N
    Membranes (Basel), 2021 May 21;11(6).
    PMID: 34063994 DOI: 10.3390/membranes11060376
    Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein-protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.
    Matched MeSH terms: Chromatography, Liquid
  6. Shinde R, Halim N, Banerjee AK
    J AOAC Int, 2020 Nov 01;103(6):1528-1533.
    PMID: 33247748 DOI: 10.1093/jaoacint/qsaa066
    BACKGROUND: Glyphosate and glufosinate are broad-spectrum herbicides which are frequently used in palm oil plantations for weed control. Metabolites of these herbicides are known to have environmental and food safety implications. As there is no validated method for multiresidue testing of these herbicides and their metabolites in palm oil products, a new method was needed for the purpose of regulatory analysis.

    OBJECTIVE: In this study, we endeavored to develop a rapid method for multiresidue analysis of glyphosate (+aminomethylphosphonic acid) and glufosinate (+3-methylphosphinicopropionic acid and N-acetyl-glufosinate) in refined and crude palm oil matrices using liquid chromatography (LC) tandem mass spectrometry (MS/MS).

    METHOD: The optimized sample preparation workflow included extraction of refined or crude palm oil (10 g) with acidified water (0.1 M HCl), cleanup by phase separation with dichloromethane, and analysis by LC-MS/MS with multiple reaction monitoring.

    RESULTS: The use of a Torus-DEA LC column ensured simultaneous analysis of these compounds within a runtime of 10 min. The LOQ of these analytes was 0.01 mg/kg, except that of aminomethylphosphonic acid which was 0.02 mg/kg. The method sensitivity complied with the national maximum residue limits of Malaysia and the European Union. Also, the method selectivity, sensitivity, accuracy, and precision were aligned with the SANTE/12682/2019 guidelines of analytical quality control.

    CONCLUSIONS: The potentiality of the optimized method lies in a high throughput direct analysis of glyphosate and glufosinate with their metabolites in a single chromatographic run. The method is fit for purpose for regulatory testing of these residues in a broad range of palm oil matrices.

    HIGHLIGHTS: The study reports for the first time a validated method for simultaneous analysis of glyphosate, glufosinate, and their metabolites in a range of palm oil products. The method did not require a derivatization step and provided a high throughput analysis of these compounds with satisfactory selectivity, sensitivity, accuracy, and precision.

    Matched MeSH terms: Chromatography, Liquid
  7. Ong SQ, Ab Majid AH, Ahmad H
    Trop Life Sci Res, 2017 Jul;28(2):45-55.
    PMID: 28890760 MyJurnal DOI: 10.21315/tlsr2017.28.2.4
    In this study, bifenthrin (Maxxthor SC, Ensystex Australasia Pty Ltd), imidacloprid (Prothor SC, Ensystex Australasia Pty Ltd) and fipronil (Regent(®)50SC, Bayer) were applied on the natural infest manures according to the manufacturer rate during a broiler breeding cycle. Solvent direct-immersion extraction (SDIE) was used in detecting the target compound and later, quantification of the insecticide residues in field condition was investigated. The samples were prior cleaned up by solid-phase extraction (SPE) and analysed by Ultra-Performance Liquid Chromatography (UPLC) - photodiode array (PDA) system. In the field trial, three insecticides were showed accumulation during the broiler breeding period and it is suggested that they acted as adulticides when applied on the poultry manures, this is supported by the significant correlation between the increment of insecticide residues to the reduction percentage of adult flies (<0.05). Fipronil showed significantly greater reduction on the adult fly compared to the other insecticides, in which the reduction rate compared to control population at the end of the broiler breeding period; fipronil, imidaclopril and bifenthrin reduced 51.51%, 28.30% and 30.84% of adult flies, respectively.
    Matched MeSH terms: Chromatography, Liquid
  8. Azman N, Zainudin NAIM, Ibrahim WNW
    Trop Life Sci Res, 2020 Oct;31(3):91-107.
    PMID: 33214858 DOI: 10.21315/tlsr2020.31.3.7
    Fumonisin B1 (FB1) is a common mycotoxin produced by Fusarium species particularly F. proliferatum and F. verticillioides. The toxin produced can cause adverse effects on humans and animals. The objectives of this study were to detect the production of FB1 based on the amplification of FUM1 gene, to quantify FB1 produced by the isolates using Ultra-fast Liquid Chromatography (UFLC) analysis, to examine the embryotoxicity effect of FB1 and to determine EC50 toward the larvae of zebrafish (Danio rerio). Fifty isolates of Fusarium species were isolated from different hosts throughout Malaysia. Successful amplification of the FUM1 gene showed the presence of this gene (800 bp) in the genome of 48 out of 50 isolates. The highest level of FB1 produced by F. proliferatum isolate B2433 was 6677.32 ppm meanwhile F. verticillioides isolate J1363 was 954.01 ppm. From the assessment of embryotoxicity test of FB1 on larvae of zebrafish, five concentrations of FB1 (0.43 ppm, 0.58 ppm, 0.72 ppm, 0.87 ppm and 1.00 ppm) were tested. Morphological changes of the FB1 exposed-larvae were observed at 24 to 168 hpf. The mortality rate and abnormality of zebrafish larvae were significantly increased at 144 hpf exposure. Meanwhile, the spontaneous tail coiling showed a significant difference. There were no significant differences in the heartbeat rate. As a conclusion, the presence of FUM1 in every isolate can be detected by FUM1 gene analysis and both of the species produced different concentrations of FB1. This is the first report of FB1 produced by Fusarium species gave a significant effect on zebrafish development.
    Matched MeSH terms: Chromatography, Liquid
  9. Noorashikin Md Saleh, Sanagi, M. Marsin
    MyJurnal
    A Pressurized Liquid Extraction (PLE) method was developed by using conventional High Performance
    Liquid Chromatography (HPLC). It was found that all of the PAHs have been successfully extracted with dichloromethane-acetone with high percentage recovery. A high temperature of 180°C gave the highest recovery for fluoranthene (94.4%). Meanwhile, fluorene showed the highest recovery at 150 bar, with 94.6% recovery. It is noted that there is no significant day-to-day difference in the efficiency of the developed method, with the R.S.D. values averaging at 0.02. The optimized conditions applied to the soil samples were analysed using the High Temperature High Performance Liquid Chromatography (HT-HPLC) with chromatographic conditions: Octadecylsilyl-silica (ODSsilica) column (100 mm × 4.6 mm I.D.); mobile phase acetonitrile:water 40:60 (v/v); flow rate 2.5 mL/min; temperature 70°C; UV absorbance 254 nm; injection volume 5µL.
    Matched MeSH terms: Chromatography, Liquid
  10. Nor Nasriah Zaini, Mardiana Saaid, Hafizan Juahir, Rozita Osman
    MyJurnal
    Tongkat Ali (Eurycoma longifolia) is one of the most popular tropical herbal plants as it is believed to enhance virility and sexual prowess. This study looked examined chromatographic fingerprint of Tongkat Ali roots and its products generated using online solid phase-extraction liquid chromatography (SPE-LC) combined with chemometric approaches. The aim was to determine its quality. Pressurised liquid extraction (PLE) technique was used prior to online SPE-LC using polystyrene divinyl benzene (PSDVB) and C18 columns. Seventeen Tongkat Ali roots and 10 products (capsules) were analysed. Chromatographic dataset was subjected to chemometric techniques, namely cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) using 37 selected peaks. The samples were grouped into three clusters based on their quality. The PCA resulted in 11 latent factors describing 90.8% of the whole variance. Pattern matching analysis showed no significant difference (p>0.05) between the roots and products within the same CA grouping. The findings showed the combination of chromatographic fingerprint and chemometric techniques provided comprehensive evaluation for efficient quality control of Tongkat Ali formulation.
    Matched MeSH terms: Chromatography, Liquid
  11. Arapidi G, Osetrova M, Ivanova O, Butenko I, Saveleva T, Pavlovich P, et al.
    Data Brief, 2018 Jun;18:1204-1211.
    PMID: 29900295 DOI: 10.1016/j.dib.2018.04.018
    Blood as connective tissue potentially contains evidence of all processes occurring within the organism, at least in trace amounts (Petricoin et al., 2006) [1]. Because of their small size, peptides penetrate cell membranes and epithelial barriers more freely than proteins. Among the peptides found in blood, there are both fragments of proteins secreted by various tissues and performing their function in plasma and receptor ligands: hormones, cytokines and mediators of cellular response (Anderson et al., 2002) [2]. In addition, in minor amounts, there are peptide disease markers (for example, oncomarkers) and even foreign peptides related to pathogenic organisms and infection agents. To propose an approach for detailed peptidome characterization, we carried out an LC-MS/MS analysis of blood serum and plasma samples taken from 20 healthy donors on a TripleTOF 5600+ mass-spectrometer. We prepared samples based on our previously developed method of peptide desorption from the surface of abundant blood plasma proteins followed by standard chromatographic steps (Ziganshin et al., 2011) [3]. The mass-spectrometry peptidomics data presented in this article have been deposited to the ProteomeXchange Consortium (Deutsch et al., 2017) [4] via the PRIDE partner repository with the dataset identifier PXD008141 and 10.6019/PXD008141.
    Matched MeSH terms: Chromatography, Liquid
  12. S J, Iqbal SZ, Talib NH, Hasnol ND
    J Food Sci Technol, 2016 Mar;53(3):1411-7.
    PMID: 27570265 DOI: 10.1007/s13197-015-2137-0
    The present study was focused to investigate the effect of selected spices (turmeric, torch ginger, lemongrass and curry leaves) on the formation of heterocyclic amines (HCAs, IQx, MeIQ, MeIQx, DiMeIQx, IQ, harman, norharman, and AαC) in deep fried lamb meat. Meat samples were marinated with optimized levels of turmeric (4 %), 10 % each of torch ginger, lemon grass, curry leaves at medium (70 °C) and well done (80 °C) doneness temperatures. The concentration of HCAs in deep fried meat samples were analysed using LC-MS/MS technique. The results revealed that torch ginger (10 %) has reduced 74.8 % of Me1Qx (1.39 to 0.35 ng/g) at medium doneness, followed by the 64.7 % reduction, using curry leaves and turmeric at medium degree of doneness. Torch ginger has reduced 86.6 % of AαC (2.59 to 0.40 ng/g) at well done doneness. The most prevalence level of HCAs was found in deep fried meat i.e. DiMeIQ (3.69 ng/g) at well done doneness. The sensory evaluation, using a 7 point hedonic test design for colour and texture in deep fried meat samples were resulted in a preferred color of golden brown and slightly tough texture. The use of local spices in marinating of deep fried lamb meat samples will certainly inhibit/reduce the level of these toxic and harmful HCAs.
    Matched MeSH terms: Chromatography, Liquid
  13. Li Y, Dong HC, Teng ST, Bates SS, Lim PT
    J Phycol, 2018 12;54(6):918-922.
    PMID: 30270437 DOI: 10.1111/jpy.12791
    Pseudo-nitzschia nanaoensis sp. nov. is described from waters around Nan'ao Island (South China Sea), using morphological data and molecular evidence. This species is morphologically most similar to P. brasiliana, but differs by a denser arrangement of fibulae, interstriae, and poroids, as well as by the structure of the valvocopula and the narrow second band. Pseudo-nitzschia nanaoensis constitutes a monophyletic lineage and is well differentiated from other species on the LSU and ITS2 sequence-structure trees. Pseudo-nitzschia nanaoensis makes up the basal node on the LSU tree, and forms a sister clade with a group of P. pungens and P. multiseries on the ITS2 tree. The ability of cultured strains to produce domoic acid was assessed, including its possible induction by the presence of a copepod and brine shrimp, by liquid chromatography-tandem mass spectrometry. However, no strains showed detectable domoic acid.
    Matched MeSH terms: Chromatography, Liquid
  14. Olalere OA, Abdurahman NH, Yunus RBM, Alara OR
    Data Brief, 2018 Aug;19:1627-1630.
    PMID: 30229034 DOI: 10.1016/j.dib.2018.06.034
    This paper contains data from the elemental and phytochemical profiling of black pepper oleoresin extracts using the LC-MS QToF and ICP-MS analysis. In recent years studies have shown the medicinal properties of extracts from these two cultivars of Piper nigrum. The medicinal properties are attributed to the presence of many secondary metabolites and mineral element in them. The phytochemical profiling was conducted using a Liquid Chromatography equipped with an electrospray time-of-flight mass spectrometer detectors. The mass spectrometer was equipped with an electrospray ionization sources operated in positive ion mode. The alkaloid compounds in the optimized black pepper extract were tentatively characterized in accordance with their ions׳ mass fragmentation.
    Matched MeSH terms: Chromatography, Liquid
  15. Yenugu VMR, Ambavaram VBR, Moniruzzaman M, Madhavi G
    J Sep Sci, 2018 Nov;41(21):3966-3973.
    PMID: 30138541 DOI: 10.1002/jssc.201800626
    In the present study, a sensitive and fully validated liquid chromatography with mass spectrometry method was developed for the quantification of three potential genotoxic impurities in rabeprazole drug substance. The separation was achieved on Symmetry C18 column (100 × 4.6 mm, 3.5 μm) using 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at 0.5 mL/min flow rate. Triple quadrupole mass detection with electrospray ionization was operated in selected ion recording mode for the quantification of impurities. The calibration curves were demonstrated good linearity over the concentration range of 1.0-4.5 ppm for O-phenylenediamine, 1.8-4.5 ppm for 4-nitrolutidine-N-oxide and 1.0-4.5 ppm for benzyltriethylammonium chloride with respect to 10 mg/mL of rabeprazole. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 94.22 and 106.84% for all selected impurities. The method validation was carried out following International Conference on Harmonization guidelines, from which the developed method was able to quantitate the impurities at 1.0 ppm for O-phenylenediamine, 1.8 ppm for 4-nitrolutidine-N-oxide and 1.0 ppm for benzyltriethylammonium chloride. Furthermore, the proposed method was successfully evaluated for the determination of selected impurities from bulk drug and formulation samples of rabeprazole within the acceptable limits.
    Matched MeSH terms: Chromatography, Liquid
  16. Mazlan O, Aizat WM, Baharum SN, Azizan KA, Noor NM
    Data Brief, 2018 Dec;21:548-551.
    PMID: 30370325 DOI: 10.1016/j.dib.2018.10.025
    Garcinia mangostana L. (mangosteen) seed is recalcitrant, prone to low temperature and drying which limit its long-term storage. Therefore, it is imperative to understand the metabolic changes throughout its development, to shed some light into the recalcitrant nature of this seed. We performed metabolomics analysis on mangosteen seed at different stages of development; six, eight, ten, twelve and fourteen weeks after anthesis. Seed samples were subjected to methanol extraction prior analysis using liquid chromatography - mass spectrometry (LC-MS). The MS data acquired were analyzed using ProfileAnalysis (version 2.1). This data article refers to the article entitled "Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds" (Mazlan et al., 2018) [1].
    Matched MeSH terms: Chromatography, Liquid
  17. Mahamad Maifiah MH, Velkov T, Creek DJ, Li J
    Methods Mol Biol, 2019;1946:321-328.
    PMID: 30798566 DOI: 10.1007/978-1-4939-9118-1_28
    Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains.
    Matched MeSH terms: Chromatography, Liquid
  18. Rashidah Iberahim, Norefrina Shafinaz Md. Nor, Wan Ahmad Yaacob, Nazlina Ibrahim
    Sains Malaysiana, 2018;47:1431-1438.
    The present study was aimed at determining the compounds available in Eleusine indica methanol extract and the effects on
    herpes simplex virus type 1 (HHV1) replication cycle and progeny infectivity. Twelve compounds mostly from the flavonoid
    and phenolic groups were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. The
    effect on replication phases of HHV1 was determined by time-of-addition, time-removal and virus yield reduction assays
    with expression of selected genes analysed by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The extract
    inhibited plaque formation the most during the first 2 h and at 24 h of infection. Plaque formation inhibition was also
    noted at all other time points but at lesser percentage. Treatment with E. indica reduced progeny infectivity when treated
    for 10 h and was dose-dependent. E. indica methanol extract inhibited immediate early, early and late phases of HHV1
    replication cycle by modifying the expression of UL
    54, UL
    27 and UL
    30 genes during the infection. Immunostaining of
    infected cells confirmed that E. indica inhibited mainly Glycoproteins B but not Glycoprotein C and D. Thus, the methanol
    extract of E. indica has the ability to alter HHV1 replication cycle at almost all stages and reduce progeny infectivity.
    Matched MeSH terms: Chromatography, Liquid
  19. Tay KSJ, Breadmore MC, Soh ES, See HH
    J Chromatogr A, 2022 Dec 06;1685:463605.
    PMID: 36375217 DOI: 10.1016/j.chroma.2022.463605
    A new dispersive inclusion complex microextraction (DICM) approach coupled with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the determination of n-nitrosamine impurities in different medicinal products is demonstrated for the first time. The proposed DICM procedures consist of a dispersive liquid phase microextraction steps employing cyclodextrin as an inclusion complex agent to extract n-nitrosamines namely N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodiisopropylamine (NDIPA), N-ethyl-N-nitrosoisopropylamine (NEIPA) and N-nitroso-di-n-butylamine (NDBA) present in the medicinal products. The sample solutions were prepared by mixing 5% (m/v) NaCl solution with 1.5 mM β-cyclodextrin and 20 mM sodium dodecyl sulphate to form a stable inclusion complex and subsequently extracted into dichloromethane as an extraction solvent. The enriched solution was reconstituted into aqueous solution prior to UPLC-MS/MS analysis. The method showed good linearity in the range of 0.036-1 ng/mL with a correlation coefficient of at least 0.995, acceptable reproducibility (RSD 0.5-5.8%, n=5), low limits of detection (0.011-0.018 ng/mL), and satisfactory relative recoveries (96-105%). The results obtained were found to be at least 10-fold more sensitive comparable to those obtained using validated direct sample dissolutions coupled with UPLC-MS/MS approach.
    Matched MeSH terms: Chromatography, Liquid
  20. Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E
    Food Chem, 2023 Mar 15;404(Pt A):134607.
    PMID: 36272303 DOI: 10.1016/j.foodchem.2022.134607
    This research assessed the influence of pickling, fermentation, germination, and tea brewing on lignan content of a variety of food highly consumed in Malaysia. Lignans have been measured by a validated LC-MS/MS method. Secoisolariciresinol (SECO) was the most abundant compound in fermented and germinated samples. Pickling significantly decreased larisiresinol content by approximately 86 %. Fermentation increased lignan content in a mixture of flaxseed and mung beans (799.9 ± 67.4 mg/100 g DW) compared to the unfermented counterpart (501.4 ± 134.6 mg/100 g DW), whereas the fermentation of soybeans and mung beans did not significantly affect the SECO content. Germination increased lignan content, which reached its peak on day 6 of germination for all the tested matrixes. In tea brew, lignans concentration increased with brewing time reaching its highest concentration at 10 min of brewing. The results of this study expand the knowledge on the effect of processing on lignan content in food.
    Matched MeSH terms: Chromatography, Liquid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links