Displaying publications 41 - 60 of 129 in total

Abstract:
Sort:
  1. Khairul Nizar Ismail, Kamarudin Hussin, Mohd Sobri Idris
    MyJurnal
    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO2), aluminium oxide (Al2O3) and iron oxide (Fe2O3). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F.
    Matched MeSH terms: Coal; Coal Ash
  2. Akinyemi SA, Gitari WM, Thobakgale R, Petrik LF, Nyakuma BB, Hower JC, et al.
    Environ Geochem Health, 2020 Sep;42(9):2771-2788.
    PMID: 31900823 DOI: 10.1007/s10653-019-00511-3
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
    Matched MeSH terms: Coal; Coal Ash
  3. Mokhtar MM, Taib RM, Hassim MH
    J Air Waste Manag Assoc, 2014 Aug;64(8):867-78.
    PMID: 25185389
    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).
    Matched MeSH terms: Coal/analysis; Coal Ash/analysis*
  4. Cheng-Yong H, Yun-Ming L, Abdullah MM, Hussin K
    Sci Rep, 2017 03 27;7:45355.
    PMID: 28345643 DOI: 10.1038/srep45355
    This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200-800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming with hydrogen peroxide. Unfoamed geopolymers possessed excellent strength of 44.2 MPa and degraded 34% to 15 MPa in foamed geopolymers. The strength of unfoamed geopolymers decreased to 5 MPa with increasing temperature up to 800 °C. Foamed geopolymers behaved differently whereby they deteriorated to 3 MPa at 400 °C and increased up to 11 MPa at 800 °C. Even so, the geopolymers could withstand high temperature without any disintegration and spalling up to 800 °C. The formation of crystalline phases at higher temperature was observed deteriorating the strength of unfoamed geopolymers but enhance the strength of foamed geopolymers. In comparison, foamed geopolymer had better thermal resistance than unfoamed geopolymers as pores provide rooms to counteract the internal damage.
    Matched MeSH terms: Coal Ash
  5. Xiaolei Wang, Qirong Qin, Cunhui Fan
    Sains Malaysiana, 2017;46:2041-2048.
    In mining process, the height of water flowing fractured zone is important significance to prevent mine of water and gas, in order to further research the failure characteristic of the overlying strata. Taking certain coal mine with 5.82 m mining height as the experimental face, by using the equipment which is sealed two ends by capsules in borehole, affused measurable water between the two capsules and borehole televiewer system, ground penetrating radar, microseismic monitoring system in underground coal mine, the height of water flowing fractured zone of fully-mechanized top caving are monitored, a numerical simulation experiment on the failure process was conducted, a similarity simulation experiment on the cracks evolution was conducted, at the same time, empirical formula of traditional was modified, The results showed that the height of caving and fractured zones were respectively 43.1 and 86.7 m in fully mechanized sub-level caving mining. The data difference of each test method of caving, fractured and water flowing fractured zones were respectively less than 4.5%, 7.1% and 9.0%. The degree of fracture development was low before mining, the number of fissures was obviously increased after mining, the degree of fracture development increased. The fractures cluster region mainly focuses near the coal wall. The fractures density distribution curves of overlying strata like sanke-shapes. The new and adapt to certain coal mine geological conditions empirical formula of water flowing fractured zone height is proposed.
    Matched MeSH terms: Coal
  6. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Coal Ash
  7. Arifin K, Ali MXM, Abas A, Ahmad MA, Ahamad MA, Sahimi AS
    J Safety Res, 2023 Sep;86:376-389.
    PMID: 37718065 DOI: 10.1016/j.jsr.2023.07.017
    INTRODUCTION: The electrical utility industry, which plays a vital role in sustaining other sectors, contributes to high occupational accident rates in the utility industries. The high accident rate shows that there has been insufficient effort made to control unsafe actions and conditions in the workplace. This study aims to examine the influence of hazard control and prevention as leading indicators of safety behaviors and outcomes in coal-fired power plants in Malaysia.

    METHODS: This quantitative research was conducted by distributing survey questionnaires randomly to five coal-fired power plants in Peninsular Malaysia. A total of 340 respondents were involved in this research. Partial least squares structural equation modeling (PLS-SEM) analysis was performed using SmartPLS to validate and examine the relationship of the proposed model.

    RESULTS: The results validate the construct of hazard control and prevention consisting of planning, action, managing, and verifying, while the safety outcomes construct consists of occupational accidents, fatal accidents, near misses, and lost time injuries. The results indicate that hazard control and prevention significantly relate to safety compliance, safety participation, safety motivation, and safety knowledge. Moreover, safety outcomes were influenced negatively by hazard control and prevention through safety compliance.

    CONCLUSION: The model provides a better understanding of the influence of hazard control and prevention on safety behavior and outcomes.

    PRACTICAL APPLICATIONS: The model can be used as guidance for practitioners and researchers in planning and implementing hazard control and prevention to improve health and safety in the workplace.

    Matched MeSH terms: Coal
  8. Ranjbar N, Mehrali M, Behnia A, Javadi Pordsari A, Mehrali M, Alengaram UJ, et al.
    PLoS One, 2016;11(1):e0147546.
    PMID: 26807825 DOI: 10.1371/journal.pone.0147546
    As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM). The results show that incorporation of PPF up to 3 wt % into the geopolymer paste reduces the shrinkage and enhances the energy absorption of the composites. While, it might reduce the ultimate flexural and compressive strength of the material depending on fiber content.
    Matched MeSH terms: Coal Ash
  9. Fujii Y, Tohno S, Ikeda K, Mahmud M, Takenaka N
    Sci Total Environ, 2021 Jan 20;753:142009.
    PMID: 32890879 DOI: 10.1016/j.scitotenv.2020.142009
    In this paper, ambient total suspended particulates (TSP) with a focus on humic-like substances (HULIS) are characterized based on intensive ground-based field samplings collected in Malaysia during non-haze and haze periods caused by peatland fires on the Indonesian island of Sumatra. Furthermore, concentrations of water-soluble organic carbon (WSOC) and carbon content of HULIS (HULIS-C) were determined, and fluorescence spectra of the HULIS samples were recorded by excitation emission matrix (EEM) fluorescence spectroscopy. The concentrations of WSOC and HULIS-C over the entire period ranged from 4.1 to 24 and 1.3 to 18 μgC m-3, respectively. The concentrations of WSOC and HULIS-C during the peatland fire-induced strong haze periods were over 4.3 and 6.1 times higher, respectively, than the average values recorded during the non-haze periods. Even during the light haze periods, the concentrations of WSOC and HULIS-C were significantly higher than their averages during the non-haze periods. These results indicate that peatland fires induce high concentrations of WSOC, particularly HULIS-C, in ambient TSP at receptor sites. EEM fluorescence spectra identified fulvic-like fluorophores at the highest intensity level in the EEM fluorescence spectra of the haze samples. A peak at excitation/emission (Ex/Em) ≈ (290-330)/(375-425) nm is also observed at high intensity, though this peak is normally associated with marine humic-like fluorophores. It is shown that a peak at Ex/Em ≈ (290-330)/(375-425) nm is not derived from marine sources only; furthermore, peatland fires are shown to be important contributors to HULIS around this peak.
    Matched MeSH terms: Coal
  10. Ahmad A, Ghufran R, Al-Hosni TK
    J Environ Health Sci Eng, 2019 Dec;17(2):1195-1203.
    PMID: 32030185 DOI: 10.1007/s40201-019-00434-2
    To investigate the interaction of zinc oxide nanoparticles (ZnO NPs) with fly ash soil (FAS) for the reduction of metals from FAS by Parthenium hysterophorus were studied. The average accumulation of metals by P. hysterophorus stem were Fe 79.6%; Zn 88.5%; Cu 67.5%; Pb 93.6%; Ni 43.5% and Hg 39.4% at 5.5 g ZnO NP. The concentration of ZnO NP at 1.5 g did not affect the metals accumulation, however at 5.5 g ZnO NP showed highest metal reduction was 96.7% and at 10.5-15.5 g ZnO NP of 19.8%. The metal reduction rate was R
    max
    for Fe 16.4; Zn 21.1; Pb 41.9; Hg 19.1 was higher than Ni 6.4 and Cu 11.3 from the FAS at 5.5 g ZnO NP whereas, the reduction rate of Pb showed highest. With doses of 5.5 g ZnO NP the biomass increased upto 78%; the metal reduced upto 98.7% with the share of 100% ZnO NP from FAS. Further investigation with phytotoxicity the plant reactive oxygen species (ROS) production were affected due was mainly due to the recovery of metals from FAS (R2 = 0.99).
    Matched MeSH terms: Coal Ash
  11. Abdullah A, Hussin K, Abdullah MMAB, Yahya Z, Sochacki W, Razak RA, et al.
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673522 DOI: 10.3390/ma14051111
    Aggregates can be categorized into natural and artificial aggregates. Preserving natural resources is crucial to ensuring the constant supply of natural aggregates. In order to preserve these natural resources, the production of artificial aggregates is beginning to gain the attention of researchers worldwide. One of the methods involves using geopolymer technology. On this basis, this current research focuses on the inter-particle effect on the properties of fly ash geopolymer aggregates with different molarities of sodium hydroxide (NaOH). The effects of synthesis parameters (6, 8, 10, 12, and 14 M) on the mechanical and microstructural properties of the fly ash geopolymer aggregate were studied. The fly ash geopolymer aggregate was palletized manually by using a hand to form a sphere-shaped aggregate where the ratio of NaOH/Na2SiO3 used was constant at 2.5. The results indicated that the NaOH molarity has a significant effect on the impact strength of a fly ash geopolymer aggregate. The highest aggregate impact value (AIV) was obtained for samples with 6 M NaOH molarity (26.95%), indicating the lowest strength among other molarities studied and the lowest density of 2150 kg/m3. The low concentration of sodium hydroxide in the alkali activator solution resulted in the dissolution of fly ash being limited; thus, the inter-particle volume cannot be fully filled by the precipitated gels.
    Matched MeSH terms: Coal Ash
  12. Ma X, Cai L, Chen L, Fei B, Lu J, Xia C, et al.
    J Environ Manage, 2021 May 15;286:112190.
    PMID: 33636623 DOI: 10.1016/j.jenvman.2021.112190
    As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.
    Matched MeSH terms: Coal
  13. Ramjan S, Tangchirapat W, Jaturapitakkul C, Chee Ban C, Jitsangiam P, Suwan T
    Materials (Basel), 2021 Mar 20;14(6).
    PMID: 33804759 DOI: 10.3390/ma14061528
    The alkali-silica reaction (ASR) is an important consideration in ensuring the long-term durability of concrete materials, especially for those containing reactive aggregates. Although fly ash (FA) has proven to be useful in preventing ASR expansion, the filler effect and the effect of FA fineness on ASR expansion are not well defined in the present literature. Hence, this study aimed to examine the effects of the filler and fineness of FA on ASR mortar expansion. FAs with two different finenesses were used to substitute ordinary Portland cement (OPC) at 20% by weight of binder. River sand (RS) with the same fineness as the FA was also used to replace OPC at the same rate as FA. The replacement of OPC with RS (an inert material) was carried out to observe the filler effect of FA on ASR. The results showed that FA and RS provided lower ASR expansions compared with the control mortar. Fine and coarse fly ashes in this study had almost the same effectiveness in mitigating the ASR expansion of the mortars. For the filler effect, smaller particles of RS had more influence on the ASR reduction than RS with coarser particles. A significant mitigation of the ASR expansion was obtained by decreasing the OPC content in the mortar mixture through its partial substitution with FA and RS.
    Matched MeSH terms: Coal Ash
  14. Chan YH, Syed Abdul Rahman SNF, Lahuri HM, Khalid A
    Environ Pollut, 2021 Mar 01;278:116843.
    PMID: 33711630 DOI: 10.1016/j.envpol.2021.116843
    Carbon monoxide (CO) is a highly valuable component of syngas which could be used to synthesize various chemicals and fuels. Conventionally, syngas is derived from fossil-based natural gas and coal which are non-renewable. To curb the problem, CO2 gasification offers a win-win solution in which CO2 is converted with wastes to CO, achieving carbon emission mitigation and addressing waste disposal issue simultaneously. In this review, gasification of various wastes by CO2 with particular focus given to generation of CO-rich syngas is presented and critically discussed. This includes the effects of operating parameters (temperature, pressure and physicochemical properties of feedstocks) and advanced CO2 gasification techniques (catalytic CO2 gasification, CO2 co-gasification and microwave-driven CO2 gasification). Furthermore, associated technological challenges are highlighted and way forward in this field are proposed.
    Matched MeSH terms: Coal
  15. Zulkifly K, Cheng-Yong H, Yun-Ming L, Bayuaji R, Abdullah MMAB, Ahmad SB, et al.
    Materials (Basel), 2021 Apr 15;14(8).
    PMID: 33920865 DOI: 10.3390/ma14081973
    Thermal performance, combustibility, and fire propagation of fly ash-metakaolin (FA-MK) blended geopolymer with the addition of aluminum triphosphate, ATP (Al(H2PO4)3), and monoaluminium phosphate, MAP (AlPO4) were evaluated in this paper. To prepare the geopolymer mix, fly ash and metakaolin with a ratio of 1:1 were added with ATP and MAP in a range of 0-3% by weight. The fire/heat resistance was evaluated by comparing the residual compressive strengths after the elevated temperature exposure. Besides, combustibility and fire propagation tests were conducted to examine the thermal performance and the applicability of the geopolymers as passive fire protection. Experimental results revealed that the blended geopolymers with 1 wt.% of ATP and MAP exhibited higher compressive strength and denser geopolymer matrix than control geopolymers. The effect of ATP and MAP addition was more obvious in unheated geopolymer and little improvement was observed for geopolymer subjected to elevated temperature. ATP and MAP at 3 wt.% did not help in enhancing the elevated-temperature performance of blended geopolymers. Even so, all blended geopolymers, regardless of the addition of ATP and MAP, were regarded as the noncombustible materials with negligible (0-0.1) fire propagation index.
    Matched MeSH terms: Coal Ash
  16. Cui J, Cui J, Peng Y, Yao D, Chan A, Chen Z, et al.
    Sci Total Environ, 2020 Jun 27;744:140558.
    PMID: 32711301 DOI: 10.1016/j.scitotenv.2020.140558
    Fluxes and composition dynamics of atmospheric nitrogen deposition play key roles in better balancing economic development and ecological environment. However, there are some knowledge gaps and difficulties in urban ecosystems, especially for small and medium-sized cities. In this study, both flux and composition (ratio of NH4+-N to NO3--N, RN) of wet-deposited dissolved inorganic nitrogen (DIN, sum of NO3--N and NH4+-N) were estimated and sources were identified at a long-term urban observation station in Tongling, a typical medium-sized city in eastern China during 2010-2016, respectively. Results showed that wet-deposited DIN fluxes were 33.20 and 28.15 kgN ha-1 yr-1 in Tongling city during 2010-2011 and 2015-2016, respectively. Compared to these two periods, both DIN and NO3--N fluxes decreased by 15.2% and 31.8% for a series of NOx abatement measures applied effectively, respectively. At the same time, the NH4+-N flux remained stable and ranged from 19.53 to 20.62 kgN ha-1 yr-1, and the RN increased from 1.7 to 2.2. Seasonally, winds from the southwest and west-southwest with higher frequencies and speeds in spring and summer brought more NH4+-N and DIN wet deposition from an ammonia plant, which could threaten the safety of regional hydrosphere ecosystems. On the whole, the wet-deposited NH4+-N was threatening regional ecosystems of both the hydrosphere and forest. The wet-deposited DIN including NH4+-N in Tongling city stemmed mainly from a combined source of coal combustion and dust from Cu extraction and smelting, ammonia production, and roads. Therefore, production lines should be updated for Cu extraction and smelting industries, thermal power generations and the ammonia plant, old vehicles should be eliminated, and the use of new energy vehicles should be promoted for regional sustainable development and human health in the medium-sized city.
    Matched MeSH terms: Coal
  17. Jimmus, Melsie Enn, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Coal Ash
  18. Jawatin, Easther Lynn Jolly, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Coal Ash
  19. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
    Environ Chem Lett, 2021 Jan 13.
    PMID: 33462541 DOI: 10.1007/s10311-020-01177-5
    Dwindling fossil fuels and improper waste management are major challenges in the context of increasing population and industrialization, calling for new waste-to-energy sources. For instance, refuse-derived fuels can be produced from transformation of municipal solid waste, which is forecasted to reach 2.6 billion metric tonnes in 2030. Gasification is a thermal-induced chemical reaction that produces gaseous fuel such as hydrogen and syngas. Here, we review refuse-derived fuel gasification with focus on practices in various countries, recent progress in gasification, gasification modelling and economic analysis. We found that some countries that replace coal by refuse-derived fuel reduce CO2 emission by 40%, and decrease the amount municipal solid waste being sent to landfill by more than 50%. The production cost of energy via refuse-derived fuel gasification is estimated at 0.05 USD/kWh. Co-gasification by using two feedstocks appears more beneficial over conventional gasification in terms of minimum tar formation and improved process efficiency.
    Matched MeSH terms: Coal
  20. Zulkifli NNI, Abdullah MMAB, Przybył A, Pietrusiewicz P, Salleh MAAM, Aziz IH, et al.
    Materials (Basel), 2021 Apr 26;14(9).
    PMID: 33925777 DOI: 10.3390/ma14092213
    This paper clarified the microstructural element distribution and electrical conductivity changes of kaolin, fly ash, and slag geopolymer at 900 °C. The surface microstructure analysis showed the development in surface densification within the geopolymer when in contact with sintering temperature. It was found that the electrical conductivity was majorly influenced by the existence of the crystalline phase within the geopolymer sample. The highest electrical conductivity (8.3 × 10-4 Ωm-1) was delivered by slag geopolymer due to the crystalline mineral of gehlenite (3Ca2Al2SiO7). Using synchrotron radiation X-ray fluorescence, the high concentration Ca boundaries revealed the appearance of gehlenite crystallisation, which was believed to contribute to development of denser microstructure and electrical conductivity.
    Matched MeSH terms: Coal Ash
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links