Displaying publications 41 - 60 of 92 in total

Abstract:
Sort:
  1. Nur Hazimah Abdul Halim, Norfazrin Mohd Hanif, Mohamed Rozali Othman, Mohd Talib Latif
    Sains Malaysiana, 2010;39:175-179.
    Surfactants in the atmosphere may act as cloud condensation nuclei, with a potentially negative impact on the global climate. Therefore, accurate determination of surfactants is crucial in order to investigate the possible effects of surfactants on the atmosphere. The aim of this study was to identify the optimum sampling method for measuring the maximum quantity of surfactants present in ambient air. Air samples were collected using a range of air sampling pumps that were made to vary in terms of flow rate, storage period, type of absorbing solution and the characteristics of the impinger tube. Samples obtained were analysed by colourimetry for anionic and cationic surfactants as methylene blue-active substances (MBAS) and disulphine blue-active substances (DBAS), respectively. Absorbance was measured at 650 nm for MBAS and 628 nm for DBAS using UV-visible spectrophotometer. We found that the optimum sampling method consisted of an absorbent solution (deionised water, buffer solution and methylene blue/disulphine blue solution) with the flow rate of 1.0 L/min. The concentration of surfactants in all sampling methods remained constant regardless of the storage period (1 day and 4 days), indicating that surfactants in the absorbing solution are quite stable. Covering the impinger tube was shown to influence the amount of both anionic and cationic surfactants detected.
    Matched MeSH terms: Colorimetry
  2. Nizar SA, Kobayashi T, Mohd Suah FB
    Luminescence, 2020 Dec;35(8):1286-1295.
    PMID: 32525612 DOI: 10.1002/bio.3890
    This paper describes the synthesis of poly(1-aminonaphthalene) and its application as a chemosensor for detection of Fe3+ using the naked eye and a fluorimetric method. The conjugated polymer was synthesized by chemical oxidative polymerization using FeCl3 as a catalyst. The response of the polymer towards various metal ions was investigated using colorimetric detection, and ultraviolet-visible and fluorescence spectroscopies. The polymer displayed high selectivity and sensitivity towards Fe3+ compared with other metal ions. A significant colour change from purple to yellow was observed upon addition of Fe3+ by the naked eye. The polymer also showed a high selectivity and sensitivity 'turn-off' fluorescence response towards Fe3+ ions. A good linear response was obtained for Fe3+ concentrations in the range 10-50 mg L-1 with a detection limit of 1.04 mg L-1 . The proposed chemosensor was applied for determination of Fe3+ content in water samples and satisfactory results were obtained.
    Matched MeSH terms: Colorimetry
  3. Mohd Nawi N, Muhamad II, Mohd Marsin A
    Food Sci Nutr, 2015 Mar;3(2):91-9.
    PMID: 25838887 DOI: 10.1002/fsn3.132
    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder.
    Matched MeSH terms: Colorimetry
  4. Subramani IG, Perumal V, Gopinath SCB, Fhan KS, Mohamed NM
    Crit Rev Anal Chem, 2021 Mar 11.
    PMID: 33691533 DOI: 10.1080/10408347.2021.1889962
    Over the past decade, science has experienced a growing rise in nanotechnology with ground-breaking contributions. Through various laborious technologies, nanomaterials with different architectures from 0 D to 3 D have been synthesized. However, the 3 D flower-like organic-inorganic hybrid nanomaterial with the most direct one-pot green synthesis method has attracted widespread attention and instantly become research hotspot since its first allusion in 2012. Mild synthesis procedure, high surface-to-volume ratio, enhanced enzymatic activity and stability are the main factor for its rapid development. However, its lower mechanical strength, difficulties in recovery from the reaction system, lower loading capacity, poor reusability and accessibility of enzymes are fatal, which hinders its wide application in industry. This review first discusses the selection of non-enzymatic biomolecules for the synthesis of hybrid nanoflowers followed by the innovative advancements made in organic-inorganic hybrid nanoflowers to overcome aforementioned issues and to enhance their extensive downstream applications in transduction technologies. Besides, the role of hybrid nanoflower has been successfully utilized in many fields including, water remediation, biocatalyst, pollutant adsorption and decolourization, nanoreactor, biosensing, cellular uptake and others, accompanied with several quantification technologies, such as ELISA, electrochemical, surface plasmon resonance (SPR), colorimetric, and fluorescence were comprehensively reviewed.
    Matched MeSH terms: Colorimetry
  5. Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, et al.
    Mikrochim Acta, 2020 01 15;187(2):131.
    PMID: 31940088 DOI: 10.1007/s00604-019-3893-8
    This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
    Matched MeSH terms: Colorimetry/methods*
  6. Noor Raihana, A.R., Marikkar, J.M.N., Jaswir, I., Nurrulhidayah, A.F., Miskandar, M.S.
    MyJurnal
    A study was carried out to compare the cookie dough properties and cookie quality made out
    of pink guava oil-palm stearin blends and lard (LD). Since LD is prohibited under religious
    restrictions, plant shortenings were prepared by mixing pink guava seed oil with palm stearin
    (PGO/PS) in different ratios: PGO-1, 40:60; PGO-2, 45:55; PGO-3, 50:50; PGO-4; 55:45 as
    replacement. The effect of these formulated plant-based shortenings and LD shortening were
    compared on dough rheological properties and cookie quality. Rheology and hardness of the
    cookie dough were evaluated using Texture Analyser (TA). Cookie hardness was evaluated
    with TA while cookie surface colors were measured using the CIE L*a*b* colorimetric system.
    Among the samples, cookies made out of PGO-2 with the ratio 45:55 (PGO:PS) performed the
    best substitute for LD to be used as shortening in cookies. PGO-2 also displayed the closest
    similarity to LD in cookies for hardness, size and thickness, cracking size as well as colour.
    As PGO-2 was a shortening formulated with plant-based ingredients, it could comply with the
    halal and toyyiban requirements.
    Matched MeSH terms: Colorimetry
  7. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: Colorimetry/methods*
  8. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am J Trop Med Hyg, 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Colorimetry
  9. Zamzuri NA, Abd-Aziz S, Rahim RA, Phang LY, Alitheen NB, Maeda T
    J Appl Microbiol, 2014 Apr;116(4):903-10.
    PMID: 24314059 DOI: 10.1111/jam.12410
    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method.
    Matched MeSH terms: Colorimetry/methods*
  10. Chew N, Noor Azhar AM, Bustam A, Azanan MS, Wang C, Lum LCS
    PLoS Negl Trop Dis, 2020 09;14(9):e0008562.
    PMID: 32881914 DOI: 10.1371/journal.pntd.0008562
    BACKGROUND: Dengue is a systemic and dynamic disease with symptoms ranging from undifferentiated fever to dengue shock syndrome. Assessment of patients' severity of dehydration is integral to appropriate care and management. Urine colour has been shown to have a high correlation with overall assessment of hydration status. This study tests the feasibility of measuring dehydration severity in dengue fever patients by comparing urine colour captured by mobile phone cameras to established laboratory parameters.

    METHODOLOGY/PRINCIPAL FINDINGS: Photos of urine samples were taken in a customized photo booth, then processed using Adobe Photoshop to index urine colour into the red, green, and blue (RGB) colour space and assigned a unique RGB value. The RGB values were then correlated with patients' clinical and laboratory hydration indices using Pearson's correlation and multiple linear regression. There were strong correlations between urine osmolality and the RGB of urine colour, with r = -0.701 (red), r = -0.741 (green), and r = -0.761 (blue) (all p-value <0.05). There were strong correlations between urine specific gravity and the RGB of urine colour, with r = -0.759 (red), r = -0.785 (green), and r = -0.820 (blue) (all p-value <0.05). The blue component had the highest correlations with urine specific gravity and urine osmolality. There were moderate correlations between RGB components and serum urea, at r = -0.338 (red), -0.329 (green), -0.360 (blue). In terms of urine biochemical parameters linked to dehydration, multiple linear regression studies showed that the green colourimetry code was predictive of urine osmolality (β coefficient -0.082, p-value <0.001) while the blue colourimetry code was predictive of urine specific gravity (β coefficient -2,946.255, p-value 0.007).

    CONCLUSIONS/SIGNIFICANCE: Urine colourimetry using mobile phones was highly correlated with the hydration status of dengue patients, making it a potentially useful hydration status tool.

    Matched MeSH terms: Colorimetry/instrumentation; Colorimetry/methods*
  11. Nur Syafiqah Martang, Nadia Majitol, Farnidah Jasnie, Lo Chor-Wai
    Borneo Akademika, 2020;4(4):15-20.
    MyJurnal
    Most of the plants in the ginger family Zingeberaceae are well-known for their medicinal properties. However, the genus Hornstedtia found in Sabah is less reported. This research aims to investigate the phytochemical constituent and vitamin C content of a fruit, locally known as the Tolidus fruit in Sabah. The dried fruit sample was extracted using three solvents which were water, ethanol and methanol. The phytochemical constituents were determined using standard Colour Test for the presence of alkaloid, flavonoid, saponin and tannin. Then, the content of Vitamin C was determined using the standard Colorimetric Titration and ascorbic acid as standard. The phytochemical evaluation revealed that all three targeted constituents were present in all extracts except for the alkaloid. The vitamin C content was determined in both dried and fresh sample of fruits, where 52.84 mg was quantified in the fresh fruit aqueous extract and 23.93 mg in the dried fruit aqueous extract respectively. These results are comparable to the content of vitamin C in orange and lime fruits. The phytochemical evaluation and vitamin C content of Tolidus suggested the potential of this underutilised fruit to be the natural and affordable source of vitamin C. Additionally, may protect the body against harmful free radicals. However, further analysis is needed to determine other constructive natural contents and evaluate the efficacy of this fruit as a natural source of antioxidant
    Matched MeSH terms: Colorimetry
  12. Rahmat RA, Humphries MA, Saedon NA, Self PG, Linacre AMT
    Int J Legal Med, 2023 Sep;137(5):1353-1360.
    PMID: 37306739 DOI: 10.1007/s00414-023-03017-x
    Teeth are frequently used for human identification from burnt remains, as the structure of a tooth is resilient against heat exposure. The intricate composition of hydroxyapatite (HA) mineral and collagen in teeth favours DNA preservation compared to soft tissues. Regardless of the durability, the integrity of the DNA structure in teeth can still be disrupted when exposed to heat. Poor DNA quality can negatively affect the success of DNA analysis towards human identification. The process of isolating DNA from biological samples is arduous and costly. Thus, an informative pre-screening method that could aid in selecting samples that can potentially yield amplifiable DNA would be of excellent value. A multiple linear regression model to predict the DNA content in incinerated pig teeth was developed based on the colourimetry, HA crystallite size and quantified nuclear and mitochondrial DNA. The chromaticity a* was found to be a significant predictor of the regression model. This study outlines a method to predict the viability of extracting nuclear and mitochondrial DNA from pig teeth that were exposed to a wide range of temperatures (27 to 1000 °C) with high accuracy (99.5-99.7%).
    Matched MeSH terms: Colorimetry
  13. Omar N, Loh Q, Tye GJ, Choong YS, Noordin R, Glökler J, et al.
    Sensors (Basel), 2013;14(1):346-55.
    PMID: 24379042 DOI: 10.3390/s140100346
    G-Quadruplex (G-4) structures are formed when G-rich DNA sequences fold into intra- or intermolecular four-stranded structures in the presence of metal ions. G-4-hemin complexes are often effective peroxidase-mimicking DNAzymes that are applied in many detection systems. This work reports the application of a G-rich daunomycin-specific aptamer for the development of an antibody-antigen detection assay. We investigated the ability of the daunomycin aptamer to efficiently catalyze the hemin-dependent peroxidase activity independent of daunomycin. A reporter probe consisting of biotinylated antigen and daunomycin aptamer coupled to streptavidin gold nanoparticles was successfully used to generate a colorimetric readout. In conclusion, the daunomycin aptamer can function as a robust alternative DNAzyme for the development of colorimetric assays.
    Matched MeSH terms: Colorimetry/methods*
  14. Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS
    Molecules, 2019 Mar 19;24(6).
    PMID: 30893817 DOI: 10.3390/molecules24061079
    G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
    Matched MeSH terms: Colorimetry
  15. Xia N, Deng D, Wang Y, Fang C, Li SJ
    Int J Nanomedicine, 2018;13:2521-2530.
    PMID: 29731627 DOI: 10.2147/IJN.S154046
    Background: Prostate-specific antigen (PSA), a serine protease, is a biomarker for preoperative diagnosis and screening of prostate cancer and monitoring of its posttreatment.

    Methods: In this work, we reported a colorimetric method for clinical detection of PSA using gold nanoparticles (AuNPs) as the reporters. The method is based on ascorbic acid (AA)-induced in situ formation of AuNPs and Cu2+-catalyzed oxidation of AA. Specifically, HAuCl4 can be reduced into AuNPs by AA; Cu2+ ion can catalyze the oxidation of AA by O2 to inhibit the formation of AuNPs. In the presence of the PSA-specific peptide (DAHSSKLQLAPP)-modified gold-coated magnetic microbeads (MMBs; denoted as DAHSSKLQLAPP-MMBs), complexation of Cu2+ by the MMBs through the DAH-Cu2+ interaction depressed the catalyzed oxidation of AA and thus allowed for the formation of red AuNPs. However, once the peptide immobilized on the MMB surface was cleaved by PSA, the DAHSSKLQ segment would be released. The resultant LAPP fragment remaining on the MMB surface could not sequestrate Cu2+ to depress its catalytic activity toward AA oxidation. Consequently, no or less AuNPs were generated.

    Results: The linear range for PSA detection was found to be 0~0.8 ng/mL with a detection limit of 0.02 ng/mL. Because of the separation of cleavage step and measurement step, the interference of matrix components in biological samples was avoided.

    Conclusion: The high extinction coefficient of AuNPs facilitates the colorimetric analysis of PSA in serum samples. This work is helpful for designing of other protease biosensors by matching specific peptide substrates.

    Matched MeSH terms: Colorimetry/instrumentation; Colorimetry/methods*
  16. Lai MY, Ooi CH, Jaimin JJ, Lau YL
    Am J Trop Med Hyg, 2020 06;102(6):1370-1372.
    PMID: 32228783 DOI: 10.4269/ajtmh.20-0001
    The incidence of zoonotic malaria, Plasmodium knowlesi, infection is increasing and now is the major cause of malaria in Malaysia. Here, we describe a WarmStart colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Plasmodium spp. The detection limit for this assay was 10 copies/µL for P knowlesi and Plasmodium ovale and 1 copy/µL for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae. To test clinical sensitivity and specificity, 100 microscopy-positive and 20 malaria-negative samples were used. The WarmStart colorimetric LAMP was 98% sensitive and 100% specific. Amplification products were visible for direct observation, thereby eliminating the need for post-amplification processing steps. Therefore, WarmStart colorimetric LAMP is suitable for use in resource-limited settings.
    Matched MeSH terms: Colorimetry/methods*
  17. Lai MY, Tang SN, Lau YL
    Am J Trop Med Hyg, 2021 Jun 15;105(2):375-377.
    PMID: 34129521 DOI: 10.4269/ajtmh.21-0150
    Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.
    Matched MeSH terms: Colorimetry/methods*; Colorimetry/standards
  18. Lai MY, Bukhari FDM, Zulkefli NZ, Ismail I, Mustapa NI, Soh TST, et al.
    Int J Infect Dis, 2022 Jul;120:132-134.
    PMID: 35472524 DOI: 10.1016/j.ijid.2022.04.036
    OBJECTIVES: Preventing reverse transcription loop-mediated isothermal amplification (RT-LAMP) carryover contamination could be solved by adding deoxyuridine triphosphate (dUTP) and uracil-DNA glycosylase (UDG) into the reaction master mix.

    METHODS: RNA was extracted from nasopharyngeal swab samples by a simple RNA extraction method.

    RESULTS: Testing of 77 samples demonstrated 91.2% sensitivity (95% confidence interval [CI]: 78-98.2%) and 100% specificity (95% confidence interval: 92-100%) using UDG RT-LAMP.

    CONCLUSION: This colorimetric UDG RT-LAMP is a simple-to-use, fast, and easy-to-interpret method, which could serve as an alternative for diagnosis of SARS-CoV-2 infection, especially in remote hospitals and laboratories with under-equipped medical facilities.

    Matched MeSH terms: Colorimetry
  19. Jaeger L, Uning R, Mohd Hanif N, Latif MT
    Bull Environ Contam Toxicol, 2019 Sep;103(3):374-379.
    PMID: 31230135 DOI: 10.1007/s00128-019-02662-6
    This study determines the levels of surfactants at 12 stations located in the Melaka River Estuary. This river estuary is located within a tourism area of Melaka Historical City. The concentrations of anionic and cationic surfactants in the sea surface microlayer (SML) and sub-surface water (SSW) were determined by using two colorimetric methods, methylene blue active substances (MBASs) and disulphine blue active substances (DBASs), respectively. The results showed that cationic surfactants as DBAS (ranging between 0.19 and 0.25 μmol L-1) dominated the concentrations of surfactants in SML. The enrichment factor (Ef) between MBAS and DBAS in the SML and SSW ranged between 1.0 and 2.0, and 1.0 to 1.4, respectively. There was no significant correlation (p > 0.05) between MBAS and DBAS for both SML and SSW. Nevertheless, there were strong correlations (p 
    Matched MeSH terms: Colorimetry
  20. Daker M, Yeo JT, Bakar N, Abdul Rahman AS, Ahmad M, Yeo TC, et al.
    Exp Ther Med, 2016 Jun;11(6):2117-2126.
    PMID: 27284293
    Nasopharyngeal carcinoma (NPC) is a type of tumour that arises from the epithelial cells that line the surface of the nasopharynx. NPC is treated with radiotherapy and cytotoxic chemotherapeutic drugs such as cisplatin and 5-fluorouracil. However, current strategies are often associated with potential toxicities. This has prompted efforts to identify alternative methods of treatment. The present study aimed to investigate silvestrol and episilvestrol-mediated inhibition of cell proliferation in human NPC cells. The growth kinetics of NPC cells treated with silvestrol or episilvestrol were monitored dynamically using a real-time, impedance-based cell analyzer, and dose-response profiles were generated using a colorimetric cell viability assay. Furthermore, apoptosis was evaluated using flow cytometry and high content analysis. In addition, flow cytometry was performed to determine cell cycle distribution. Finally, the effects of combining silvestrol or episilvestrol with cisplatin on NPC cells was examined. Apoptosis was not observed in silvestrol and episilvestrol-treated NPC cells, although cell cycle perturbation was evident. Treatment with both compounds induced a significant increase in the percentage of cells in the G2/M phase, as compared with the control. In vitro cultures combining silvestrol or episilvestrol with cisplatin showed synergistic effects against NPC cells. The results of the present study suggested that silvestrol and episilvestrol had an anti-tumour activity in NPC cells. Silvestrol and episilvestrol, particularly in combination with cisplatin, merit further investigation, so as to determine the cellular mechanisms underlying their action(s) as anti-NPC agents.
    Matched MeSH terms: Colorimetry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links