Displaying publications 41 - 60 of 93 in total

Abstract:
Sort:
  1. Nafi' A, Ling FH, Bakar J, Ghazali HM
    Molecules, 2014 Aug 15;19(8):12336-48.
    PMID: 25153861 DOI: 10.3390/molecules190812336
    Extraction of protease from a local ginger rhizome (Zingiber officinale var. Bentong) was carried out. The effect of extraction pH (6.4, 6.8, 7.0, 7.2, 7.6, 8.0, 8.4, and 8.8) and stabilizers (0.2% ascorbic acid, 0.2% ascorbic acid and 5 mM EDTA, or 10 mM cysteine and 5 mM EDTA) on protease activity during extraction was examined. pH 7.0 potassium phosphate buffer and 10 mM cysteine in combination with 5 mM EDTA as stabilizer were found to be the most effective conditions. The extraction procedure yielded 0.73% of Bentong ginger protease (BGP) with a specific activity of 24.8±0.2 U/mg protein. Inhibitory tests with some protease inhibitors classified the enzyme as a cysteine protease. The protease showed optimum activity at 60 °C and pH 6-8, respectively. The enzyme was completely inhibited by heavy metal cations such as Cu2+, and Hg2+. SDS stimulated the activity of enzyme, while emulsifiers (Tween 80 and Tween 20) slightly reduced its activity. The kinetic analysis showed that the protease has Km and Vmax values of 0.21 mg mL-1 and 34.48 mg mL-1 min-1, respectively. The dried enzyme retained its activity for 22 months when stored at -20 °C.
    Matched MeSH terms: Ginger/enzymology*
  2. Sani NF, Belani LK, Sin CP, Rahman SN, Das S, Chi TZ, et al.
    Biomed Res Int, 2014;2014:160695.
    PMID: 24822178 DOI: 10.1155/2014/160695
    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats.
    Matched MeSH terms: Ginger/chemistry*
  3. Xing M, Akowuah GA, Gautam V, Gaurav A
    J Biomol Struct Dyn, 2017 Oct;35(13):2910-2924.
    PMID: 27608741 DOI: 10.1080/07391102.2016.1234417
    Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.
    Matched MeSH terms: Ginger/chemistry*
  4. Daniel-Jambun D, Dwiyanto J, Lim YY, Tan JBL, Muhamad A, Yap SW, et al.
    J Appl Microbiol, 2017 Oct;123(4):810-818.
    PMID: 28708293 DOI: 10.1111/jam.13536
    AIMS: To investigate the antimicrobial properties of Etlingera coccinea and Etlingera sessilanthera and to isolate and identify the antimicrobial compounds.

    METHODS AND RESULTS: Extracts were obtained via sequential solvent extraction method using hexane, dichloromethane, ethyl acetate, methanol and water. Antimicrobial activity testing was done using broth microdilution assay against 17 strains of bacteria. The leaf hexane extract of E. coccinea and rhizome hexane extract of E. sessilanthera showed best antimicrobial activities, with minimum inhibitory concentration (MIC) values ranging from 0·016 to 1 mg ml-1 against Gram-positive bacteria. From these active extracts, two antimicrobials were isolated and identified as trans-2-dodecenal and 8(17),12-labdadiene-15,16-dial with MIC values ranging from 4 to 8 μg ml-1 against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.

    CONCLUSION: Etlingera coccinea and E. sessilanthera demonstrated good antimicrobial activities against clinically relevant bacteria strains. The antimicrobial compounds isolated showed low MIC values, hence suggesting their potential use as antimicrobial agents.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to identify the potent antimicrobials from these gingers. The antimicrobials isolated could potentially be developed further for use in treatment of bacterial infections. Also, this study warrants further research into other Etlingera species in search for more antimicrobial compounds.

    Matched MeSH terms: Ginger/chemistry*
  5. Zakaria ZA, Mohamad AS, Chear CT, Wong YY, Israf DA, Sulaiman MR
    Med Princ Pract, 2010;19(4):287-94.
    PMID: 20516705 DOI: 10.1159/000312715
    OBJECTIVE: The present study was carried out to determine the antiinflammatory and antinociceptive activities of a methanol extract of Zingiber zerumbet rhizomes (MEZZ) using various experimental model systems.

    MATERIALS AND METHODS: The MEZZ was prepared by macerating oven-dried (50 degrees C) powdered rhizomes (1.2 kg) of Z. zerumbet in 80% methanol in a ratio of 1:20 (w/v) for 48 h. The supernatant was collected, filtered and evaporated to dryness under reduced pressure (50 degrees C) yielding approximately 21.0 g of the crude dried extract. The crude dried extract was stored at -20 degrees C prior to use and was dissolved in normal saline (0.9% NaCl) immediately before administration at concentrations required to produce doses of 25, 50 and 100 mg/kg.

    RESULTS: All dosages of MEZZ showed significant (p < 0.05) antiedema activity when assessed using the carrageenan-induced paw edema test and the cotton-pellet-induced granuloma test. The MEZZ exhibited significant (p < 0.05) antinociceptive activity when assessed by the writhing, hot plate and formalin tests. Pretreatment with naloxone (5 mg/kg) significantly decreased the latency of discomfort produced by the 100 mg/kg dose of MEZZ in the hot plate test.

    CONCLUSION: MEZZ produced antiinflammatory and antinociceptive activities which may involve the inhibition of bradykinin-, prostaglandin-, histamine- and opioid-mediated processes.

    Matched MeSH terms: Ginger/chemistry*
  6. Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, et al.
    Sci Rep, 2019 Feb 28;9(1):3047.
    PMID: 30816255 DOI: 10.1038/s41598-019-39944-2
    Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
    Matched MeSH terms: Ginger/genetics
  7. Razali N, Dewa A, Asmawi MZ, Mohamed N, Manshor NM
    J Integr Med, 2020 Jan;18(1):46-58.
    PMID: 31882255 DOI: 10.1016/j.joim.2019.12.003
    OBJECTIVE: To evaluate vasorelaxant and vasoconstriction effects of Zingiber officinale var. rubrum (ZOVR) on live rats and isolated aortic rings of spontaneously hypertensive rats (SHRs).

    METHODS: Extracts of ZOVR were subjected to in-vivo antihypertensive screening using noninvasive blood pressures in SHRs. The most potent extract, ZOVR petroleum ether extract (ZOP) was then fractionated using n-hexane, chloroform and water. Isolated thoracic aortic rings were harvested and subjected to vascular relaxation studies of n-hexane fraction of ZOP (HFZOP) with incubation of different antagonists such as Nω-nitro-l-arginine methyl ester (L-NAME, 10 µmol/L), indomethacin (10 µmol/L), methylene blue (10 µmol/L), atropine (1 µmol/L), glibenclamide (10 µmol/L), prazosin (0.01 µmol/L), and propranolol (1 µmol/L).

    RESULTS: During the screening of various ZOVR extracts, ZOP produced the most reduction in blood pressures of SHRs and so did HFZOP. HFZOP significantly decreased phenylephrine-induced contraction and enhanced acetylcholine-induced relaxation. L-NAME, indomethacin, methylene blue, atropine, and glibenclamide significantly potentiated the vasorelaxant effects of HFZOP. Propranolol and prazosin did not alter the vasorelaxant effects of HFZOP. HFZOP significantly suppressed the Ca2+-dependent contraction and influenced the ratio of the responses to phenylephrine in Ca2+-free medium.

    CONCLUSION: This study demonstrates that ZOP may exert an antihypertensive effect in the SHR model. Its possible vascular relaxation mechanisms involve nitric oxide and prostacyclin release, activation of cGMP-KATP channels, stimulation of muscarinic receptors, and transmembrane calcium channel or Ca2+ release from intracellular stores. Possible active compounds that contribute to the vasorelaxant effects are 6-gingerol, 8-gingerol and 6-shogaol.

    Matched MeSH terms: Ginger/chemistry*
  8. Fahrina A, Arahman N, Mulyati S, Aprilia S, Mat Nawi NI, Aqsha A, et al.
    Polymers (Basel), 2020 Sep 03;12(9).
    PMID: 32899138 DOI: 10.3390/polym12092003
    Biofouling on the membrane surface leads to performance deficiencies in membrane filtration. In this study, the application of ginger extract as a bio-based additive to enhance membrane antibiofouling properties was investigated. The extract was dispersed in a dimethyl acetamide (DMAc) solvent together with polyvinylidene fluoride (PVDF) to enhance biofouling resistance of the resulting membrane due to its antibiotic property. The concentrations of the ginger extract in the dope solution were varied in the range of 0-0.1 wt %. The antibacterial property of the resulting membranes was assessed using the Kirby Bauer disc diffusion method. The results show an inhibition zone formed around the PVDF/ginger membrane against Escherichia coli and Staphylococcus aureus demonstrating the efficacy of the residual ginger extract in the membrane matrix to impose the antibiofouling property. The addition of the ginger extract also enhanced the hydrophilicity in the membrane surface by lowering the contact angle from 93° to 85°, which was in good agreement with the increase in the pure water flux of up to 62%.
    Matched MeSH terms: Ginger
  9. Kiew R, Chung-Lu L
    PhytoKeys, 2020;166:57-77.
    PMID: 33199961 DOI: 10.3897/phytokeys.166.55778
    The Klang Gates Quartz Ridge (KGQR) is proposed for protection as National Heritage and as a UNESCO World Heritage Site because of its spectacular size, exceptional beauty and significant biodiversity. The checklist of vascular plants documents 314 species that comprise a unique combination that grows on lowland quartz and that is distinct from the surrounding lowland equatorial rain forest by the absence of orchids, palms, gingers and tree canopy families. The Rubiaceae, Gramineae, Moraceae, Apocynaceae, Melastomataceae and Polypodiaceae are the most speciose families. The summit vegetation at 200-400 m elevation is dominated by Baeckea frutescens (Myrtaceae) and Rhodoleia championii (Hamamelidaceae) and shows similarities to the plant community on rocky mountain peaks above 1500 m. About 11% of its species are endemic in Peninsular Malaysia and four are endemic to KGQR: Aleisanthia rupestris (Rubiaceae), Codonoboea primulina (Gesneriaceae), Spermacoce pilulifera (Rubiaceae), and Ilex praetermissa (Aquifoliaceae). All four are provisionally assessed as Critically Endangered. Two, Eulalia milsumi (Gramineae) and Sonerila prostrata (Melastomataceae), are endemic to KGQR and a few neighbouring smaller quartz dykes. They are assessed as Endangered. The KGQR is a fragile habitat and conservation management is urgently required to halt the spread of the aggressive alien grass, Pennisetum polystachion and to prevent further habitat degradation from visitors. Based on KGQR being a threatened habitat, its biodiverse flora, and endangered species, it qualifies as an Important Plant Area.
    Matched MeSH terms: Ginger
  10. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Ginger
  11. Norina Abdullah, Nur Zakiah Mohd Saat, Hazlin Abu Hasan, Siti Balkis Budin, Sazlina Kamaralzaman
    MyJurnal
    The protective effect of the ethanol extract of the rhizome of Zingiber officinale Roscoe on acute hepatotoxicity induced by paracetamol (1000 mg/kg) was studied in plasma and hepatic tissue samples obtained from male Sprague-Dawley rats. The ethanol extract was given in oral doses of 200 mg/kg and 300 mg/kg to the rats at 0, 4 and 8 hrs after paracetamol was given orally. The plasma and liver of the rats were subjected to biochemical analysis 24 hrs after hepatotoxicity was induced to determine the levels of superoxide dismutase(SOD), malonaldehyde (MDA) and aspartate transaminase (AST). The results were compared to the rats which were given the antidote N-acetylcysteine (NAC) (500 mg/kg) at 0, 4 and 8 hrs after the paracetamol dose. The results showed that at 200 mg/kg the extract reduced the plasma levels of SOD significantly (p < 0.05) while at a higher dose of 300 mg/kg it reduced plasma SOD, hepatic MDA, serum AST and increased the levels of plasma proteins significantly (p < 0.05). In conclusion, the ethanol extract of Z. officinale showed protective effect against paracetamol induced hepatotoxicity at both dose levels and the protective effect was better at the higher dose.
    Matched MeSH terms: Ginger
  12. Sepahpour S, Selamat J, Khatib A, Manap MYA, Abdull Razis AF, Hajeb P
    PMID: 29913103 DOI: 10.1080/19440049.2018.1488085
    Natural antioxidants in spices and herbs have attracted considerable attention as potential inhibitors against the formation of mutagenic heterocyclic amines (HCAs) in heat-processed meat. In this study, the inhibitory activity of four spices/herbs and their mixtures on HCAs formation in grilled beef were examined. A simplex centroid mixture design with four components comprising turmeric, curry leaf, torch ginger and lemon grass in 19 different proportions were applied on beef samples before grilling at 240 ºC for 10 min. The HCAs were extracted from the samples using solid phase extraction (SPE) method and analysed using Liquid chromatography mass spectrometry LC-MS/MS. All spices/herbs in single or mixture forms were found to reduce total HCA concentrations in marinated grilled beef ranging from 21.2% for beef marinated with curry leaf to 94.7% for the combination of turmeric and lemon grass (50:50 w/w). At the optimum marinade formula (turmeric: lemon grass 52.4%: 47.6%), concentration of 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), Harman, Norharman and AαC were 2.2, 1.4, 0.5, 2.8 and 1.2 ng/g, respectively. The results of the mutagenic activity demonstrated that this optimised marinade formula significantly (p 
    Matched MeSH terms: Ginger
  13. Nadia, Hisamuddin, Nadhirah, Kamarudin, Mohd Roslan, Sulaiman, Wan Mastura, Shaik Mossadeq
    MyJurnal
    Zingiberaceae is one of the largest plant families consisting of rhizomes that are commonly used as spice in soups and curries as well as alternative medications in folklore medicine. Zingiber officinale or commonly known as ginger is extensively employed in Asian, Ayurvedic, Chinese, and Arabian folklore medicine for the treatment of pain, inflammation and various spasm-associated gastric ailments. The past few decades saw rapid advancements in the extraction process of ginger bioactive constituents and validation of their corresponding pharmacodynamic and pharmacotherapeutic activities, and biological properties in vivo and in vitro. Results reported from several biological studies on ginger showed that extracts and compounds from this tuberous rhizome exhibit antiemetic, anticancer, antipyretic, antispasmogenic and antimicrobial activities. This article reviews the effect of Zingiber officinale and its bioactive constituents on isolated organ preparations from several species of animals in view of its potential use as an alternative treatment for muscle spasms and common gastric ailments.
    Matched MeSH terms: Ginger
  14. Mohd Sahardi NFN, Jaafar F, Mad Nordin MF, Makpol S
    PMID: 32419792 DOI: 10.1155/2020/1787342
    Background: Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration.

    Methods: Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size.

    Results: Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index.

    Conclusions: Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.

    Matched MeSH terms: Ginger
  15. Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cámara M, et al.
    BMC Microbiol, 2011 Mar 08;11:51.
    PMID: 21385437 DOI: 10.1186/1471-2180-11-51
    BACKGROUND: Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest.

    RESULTS: By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens.

    CONCLUSIONS: Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.

    Matched MeSH terms: Ginger/microbiology*
  16. Ghasemzadeh A, Jaafar HZ
    Int J Mol Sci, 2011 Feb 10;12(2):1101-14.
    PMID: 21541046 DOI: 10.3390/ijms12021101
    The effect of two different CO(2) concentrations (400 and 800 μmol mol(-1)) on the photosynthesis rate, primary and secondary metabolite syntheses and the antioxidant activities of the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. High photosynthesis rate (10.05 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (83.4 g in Halia Bentong) were observed at 800 μmol mol(-1) CO(2). Stomatal conductance decreased and water use efficiency increased with elevated CO(2) concentration. Total flavonoids (TF), total phenolics (TP), total soluble carbohydrates (TSC), starch and plant biomass increased significantly (P ≤ 0.05) in all parts of the ginger varieties under elevated CO(2) (800 μmol mol(-1)). The order of the TF and TP increment in the parts of the plant was rhizomes > stems > leaves. More specifically, Halia Bara had a greater increase of TF (2.05 mg/g dry weight) and TP (14.31 mg/g dry weight) compared to Halia Bentong (TF: 1.42 mg/g dry weight; TP: 9.11 mg/g dry weight) in average over the whole plant. Furthermore, plants with the highest rate of photosynthesis had the highest TSC and phenolics content. Significant differences between treatments and species were observed for TF and TP production. Correlation coefficient showed that TSC and TP content are positively correlated in both varieties. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased in young ginger grown under elevated CO(2). The FRAP values for the leaves, rhizomes and stems extracts of both varieties grown under two different CO(2) concentrations (400 and 800 μmol mol(-1)) were significantly lower than those of vitamin C (3107.28 μmol Fe (II)/g) and α-tocopherol (953 μmol Fe (II)/g), but higher than that of BHT (74.31 μmol Fe (II)/g). These results indicate that the plant biomass, primary and secondary metabolite synthesis, and following that, antioxidant activities of Malaysian young ginger varieties can be enhanced through controlled environment (CE) and CO(2) enrichment.
    Matched MeSH terms: Ginger/metabolism*
  17. Lua PL, Zakaria NS
    J Altern Complement Med, 2012 Jun;18(6):534-40.
    PMID: 22784340 DOI: 10.1089/acm.2010.0862
    OBJECTIVES: The objective of this study was to compile existing scientific evidence regarding the effects of essential oils (EOs) administered via inhalation for the alleviation of nausea and vomiting.

    METHODS: CINAHL, PubMed, and EBSCO Host and Science Direct databases were searched for articles related to the use of EOs and/or aromatherapy for nausea and vomiting. Only articles using English as a language of publication were included. Eligible articles included all forms of evidence (nonexperimental, experimental, case report). Interventions were limited to the use of EOs by inhalation of their vapors to treat symptoms of nausea and vomiting in various conditions regardless of age group. Studies where the intervention did not utilize EOs or were concerned with only alcohol inhalation and trials that combined the use of aromatherapy with other treatments (massage, relaxations, or acupressure) were excluded.

    RESULTS: Five (5) articles met the inclusion criteria encompassing trials with 328 respondents. Their results suggest that the inhaled vapor of peppermint or ginger essential oils not only reduced the incidence and severity of nausea and vomiting but also decreased antiemetic requirements and consequently improved patient satisfaction. However, a definitive conclusion could not be drawn due to methodological flaws in the existing research articles and an acute lack of additional research in this area.

    CONCLUSIONS: The existing evidence is encouraging but yet not compelling. Hence, further well-designed large trials are needed before confirmation of EOs effectiveness in treating nausea and vomiting can be strongly substantiated.

    Matched MeSH terms: Ginger*
  18. Feroz SR, Mohamad SB, Lee GS, Malek SN, Tayyab S
    Phytomedicine, 2015 Jun 01;22(6):621-30.
    PMID: 26055127 DOI: 10.1016/j.phymed.2015.03.016
    BACKGROUND: 6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties.

    PURPOSE: The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA).

    METHODS: Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments.

    RESULTS: Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA.

    CONCLUSION: All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds.

    Matched MeSH terms: Ginger/chemistry*
  19. Ghasemzadeh A, Jaafar HZ
    Molecules, 2013 May 21;18(5):5965-79.
    PMID: 23698049 DOI: 10.3390/molecules18055965
    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching.
    Matched MeSH terms: Ginger/enzymology*
  20. Tang CT, Belani LK, Das S, Jaafar MZ
    Clin Ter, 2013;164(1):43-6.
    PMID: 23455743 DOI: 10.7417/T.2013.1511
    Dementia is a common symptom observed in many psychiatric and neurodegenerative diseases. Alzheimer's disease is the most common form of senile dementia seen in the general population. Multiple factors like oxidative stress, apoptosis, mitochondrial dysfunction and inflammation may be related to the neurodegenerative states. Many drugs like cholinesterase have been used for treatment but the progression of the disease still poses a challenge to the clinician. During recent times, herbs have gained much popularity as supplements because of the cost effectiveness, easy availability and fewer side effects. Early diagnosis and proper treatment may help in the prevention of mortality and morbidity concerned with any neurodegenerative disease. Understanding the cellular and molecular biology of the mode of the action of herbal products may be beneficial for researchers and clinicians. The present review article attempts to look into the potential herbal extracts which may act as an antioxidant in combating dementia.
    Matched MeSH terms: Ginger*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links