RESULTS AND DISCUSSION: The synthesized benzimidazole compounds were evaluated for their antimicrobial activity using the tube dilution method and were found to exhibit good antimicrobial potential against selected Gram negative and positive bacterial and fungal species. The compounds were also assessed for their anticancer activity exhibited using the SRB assay and were found to elicit antiproliferative activity against MCF7 breast cancer cell line, which was comparable to the standard drug.
CONCLUSION: Antimicrobial screening results indicated that compounds 1, 2 and 19 to be promising antimicrobial agents against selected microbial species and comparable to standard drugs which included norfloxacin and fluconazole. The anticancer screening results revealed that compounds, 12, 21, 22 and 29 to show the highest activity against MCF7 and their IC50 values were more potent than 5-fluorouracil.
Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.
Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.