Displaying publications 41 - 60 of 2090 in total

Abstract:
Sort:
  1. Qian M, Zhang H, Kham SK, Liu S, Jiang C, Zhao X, et al.
    Genome Res, 2017 02;27(2):185-195.
    PMID: 27903646 DOI: 10.1101/gr.209163.116
    Chromosomal translocations are a genomic hallmark of many hematologic malignancies. Often as initiating events, these structural abnormalities result in fusion proteins involving transcription factors important for hematopoietic differentiation and/or signaling molecules regulating cell proliferation and cell cycle. In contrast, epigenetic regulator genes are more frequently targeted by somatic sequence mutations, possibly as secondary events to further potentiate leukemogenesis. Through comprehensive whole-transcriptome sequencing of 231 children with acute lymphoblastic leukemia (ALL), we identified 58 putative functional and predominant fusion genes in 54.1% of patients (n = 125), 31 of which have not been reported previously. In particular, we described a distinct ALL subtype with a characteristic gene expression signature predominantly driven by chromosomal rearrangements of the ZNF384 gene with histone acetyltransferases EP300 and CREBBP ZNF384-rearranged ALL showed significant up-regulation of CLCF1 and BTLA expression, and ZNF384 fusion proteins consistently showed higher activity to promote transcription of these target genes relative to wild-type ZNF384 in vitro. Ectopic expression of EP300-ZNF384 and CREBBP-ZNF384 fusion altered differentiation of mouse hematopoietic stem and progenitor cells and also potentiated oncogenic transformation in vitro. EP300- and CREBBP-ZNF384 fusions resulted in loss of histone lysine acetyltransferase activity in a dominant-negative fashion, with concomitant global reduction of histone acetylation and increased sensitivity of leukemia cells to histone deacetylase inhibitors. In conclusion, our results indicate that gene fusion is a common class of genomic abnormalities in childhood ALL and that recurrent translocations involving EP300 and CREBBP may cause epigenetic deregulation with potential for therapeutic targeting.
    Matched MeSH terms: Mice
  2. Ariffin H, Hainaut P, Puzio-Kuter A, Choong SS, Chan AS, Tolkunov D, et al.
    Proc Natl Acad Sci U S A, 2014 Oct 28;111(43):15497-501.
    PMID: 25313051 DOI: 10.1073/pnas.1417322111
    The Li-Fraumeni syndrome (LFS) and its variant form (LFL) is a familial predisposition to multiple forms of childhood, adolescent, and adult cancers associated with germ-line mutation in the TP53 tumor suppressor gene. Individual disparities in tumor patterns are compounded by acceleration of cancer onset with successive generations. It has been suggested that this apparent anticipation pattern may result from germ-line genomic instability in TP53 mutation carriers, causing increased DNA copy-number variations (CNVs) with successive generations. To address the genetic basis of phenotypic disparities of LFS/LFL, we performed whole-genome sequencing (WGS) of 13 subjects from two generations of an LFS kindred. Neither de novo CNV nor significant difference in total CNV was detected in relation with successive generations or with age at cancer onset. These observations were consistent with an experimental mouse model system showing that trp53 deficiency in the germ line of father or mother did not increase CNV occurrence in the offspring. On the other hand, individual records on 1,771 TP53 mutation carriers from 294 pedigrees were compiled to assess genetic anticipation patterns (International Agency for Research on Cancer TP53 database). No strictly defined anticipation pattern was observed. Rather, in multigeneration families, cancer onset was delayed in older compared with recent generations. These observations support an alternative model for apparent anticipation in which rare variants from noncarrier parents may attenuate constitutive resistance to tumorigenesis in the offspring of TP53 mutation carriers with late cancer onset.
    Matched MeSH terms: Mice, Knockout
  3. Bruce JP, To KF, Lui VWY, Chung GTY, Chan YY, Tsang CM, et al.
    Nat Commun, 2021 07 07;12(1):4193.
    PMID: 34234122 DOI: 10.1038/s41467-021-24348-6
    Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.
    Matched MeSH terms: Mice
  4. Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J
    Food Chem, 2015 Feb 15;169:401-10.
    PMID: 25236244 DOI: 10.1016/j.foodchem.2014.07.005
    Tea (Camellia sinensis) is one of the most consumed beverages in the world. White tea is made from the buds and young leaves of the tea plant which are steamed and dried, whilst undergoing minimal oxidation. The MTT assay was used to test the extract on the effect of the proliferation of the colorectal cancer cell line, HT-29. The extract inhibited the proliferation of HT-29 cells with an IC50 of 87μg/ml. The extract increased the levels of caspase-3, -8, and -9 activity in the cells. DNA damage in 3T3-L1 normal cells was detected by using the comet assay. The extract protected 3T3-L1 cells against H2O2-induced DNA damage. The results from this study show that white tea has antioxidant and antiproliferative effects against cancer cells, but protect normal cells against DNA damage. Regular intake of white tea can help to maintain good health and protect the body against disease.
    Matched MeSH terms: Mice
  5. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: Mice
  6. Perumal R, Tan I
    IUBMB Life, 2007 Jul;59(7):465-8.
    PMID: 17654123
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  7. Mohammad MK, Mohamed MI, Zakaria AM, Abdul Razak HR, Saad WM
    Biomed Res Int, 2014;2014:512834.
    PMID: 24877107 DOI: 10.1155/2014/512834
    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P < 0.05). Mice supplemented with 50% watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  8. Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink ERT, et al.
    Inorg Chem, 2021 Oct 18;60(20):15291-15309.
    PMID: 34597028 DOI: 10.1021/acs.inorgchem.1c01899
    Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 μM showed greater activity in comparison to cisplatin against the HT-29 cell line.
    Matched MeSH terms: Mice
  9. Tan BL, Norhaizan ME, Yeap SK, Roselina K
    Eur Rev Med Pharmacol Sci, 2015;19(6):1022-9.
    PMID: 25855928
    Brewers' rice, a mixture of broken rice, rice bran, and rice germ, is a rice by-product in the rice industry. The present study was designed to investigate the in vitro cytotoxicity of the water extract of brewers' rice (WBR) against colorectal cancer (HT-29) cells.
    Matched MeSH terms: Mice
  10. Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, et al.
    PLoS One, 2015;10(10):e0139831.
    PMID: 26473485 DOI: 10.1371/journal.pone.0139831
    BACKGROUND: Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication.

    METHODS: The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication.

    RESULTS: Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position.

    CONCLUSION: The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.

    Matched MeSH terms: Mice
  11. Mohd Fazirul, M., Sharaniza, A.R., Norhazlin, J.M.Y., Wan Hafizah, W.J., Razif, D., Froemming, G.R.A., et al.
    MyJurnal
    Cryopreservation by vitrification has been widely used in Assisted Reproductive Technology (ART) to preserve embryos for an extended period of time. However, the effect of vitrification on development of the embryos is lacking. Therefore, understanding on vitrification effects on embryonic proteins, especially those involved in preimplantation development is crucial to provide high quality embryos for further usage. In this study, XIAP and S6K1 protein expressions following vitrification was investigated, since they have been implicated in diverse cellular processes including cell growth, migration, proliferation, differentiation, survival and development of preimplantation embryos via the PI3K pathway. Embryos were obtained from superovulated female ICR mice which were mated with fertile males. The embryos were harvested at the 2-cell stage and cultured until blastocyst stage. Blastocysts were then vitrified in ESF40 cryoprotectant. Western blot was carried out to determine the expression of XIAP and S6K1 proteins. The results showed the expression of XIAP and S6K1 significantly decreased in vitrified blastocyst compared to the control. This indicates that blastocyst vitrification may impact developmental competence through the activation of apoptotic pathways.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  12. Choo CY, Sulong NY, Man F, Wong TW
    J Ethnopharmacol, 2012 Aug 1;142(3):776-81.
    PMID: 22683902 DOI: 10.1016/j.jep.2012.05.062
    The leaves of Ficus deltoidea are used as a traditional medicine by diabetes patients in Malaysia.
    Matched MeSH terms: Mice
  13. Abd Jalil A, Khaza'ai H, Nordin N, Mansor N, Zaulkffali AS
    PMID: 29348770 DOI: 10.1155/2017/6048936
    Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer's disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP) in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES) cell cultures were elucidated. A transgenic mouse ES cell line (46C) was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS) was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.
    Matched MeSH terms: Mice, Transgenic; Mice
  14. Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, et al.
    J Neurooncol, 2018 Sep;139(2):293-305.
    PMID: 29767307 DOI: 10.1007/s11060-018-2889-2
    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
    Matched MeSH terms: Mice, Inbred C57BL; Mice, Nude; Mice
  15. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12693592
    The pathogenicity of Malaysian isolates of Orientia tsutsugamushi was investigated by a mouse virulence assay. The isolates could be differentiated as low (4 isolates), moderately (3 isolates) and highly virulent (2 isolates) based on the different responses in infected mice. No direct correlation between severity of human scrub typhus infections and virulence of the O. tsutsugamushi in mice was observed. Mice infected with virulent strains of O. tsutsugamushi showed splenomegaly, ascitis accumulation and enlargement of kidneys and livers whereas avirulent O. tsutsugamushi strains were asymptomatic and exhibited ruffled fur for a short period after infection. There was low antibody response in mice infected with isolates of low pathogenicity as compared with those of highly virulent isolates. Upon dissection of the infected mice, enlargement of mouse organs such as spleen, kidney and liver was noted. Presence of rickettsemia in mice was confirmed by the growth of O. tsutsugamushi in the L929 cells when inoculated with blood from infected mice. O. tsutsugamushi was also cultured from the peritoneal exudates of the infected mice. However, DNA of O. tsutsugamushi was only detected in the peritoneal exudates (by PCR) and blood (by cell culture) and not from other tissue samples.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  16. Hashim YZ, Worthington J, Allsopp P, Ternan NG, Brown EM, McCann MJ, et al.
    Food Funct, 2014 Jul 25;5(7):1513-9.
    PMID: 24836598 DOI: 10.1039/c4fo00090k
    The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
    Matched MeSH terms: Mice, Inbred BALB C; Mice, SCID; Mice
  17. Muñoz-Moreno R, Martínez-Romero C, Blanco-Melo D, Forst CV, Nachbagauer R, Benitez AA, et al.
    Cell Rep, 2019 12 17;29(12):3997-4009.e5.
    PMID: 31851929 DOI: 10.1016/j.celrep.2019.11.070
    Influenza A viruses (IAVs) have a remarkable tropism in their ability to circulate in both mammalian and avian species. The IAV NS1 protein is a multifunctional virulence factor that inhibits the type I interferon host response through a myriad of mechanisms. How NS1 has evolved to enable this remarkable property across species and its specific impact in the overall replication, pathogenicity, and host preference remain unknown. Here we analyze the NS1 evolutionary landscape and host tropism using a barcoded library of recombinant IAVs. Results show a surprisingly great variety of NS1 phenotypes according to their ability to replicate in different hosts. The IAV NS1 genes appear to have taken diverse and random evolutionary pathways within their multiple phylogenetic lineages. In summary, the high evolutionary plasticity of this viral protein underscores the ability of IAVs to adapt to multiple hosts and aids in our understanding of its global prevalence.
    Matched MeSH terms: Mice
  18. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: Mice
  19. Amuthan A, Devi V, Shreedhara CS, Rao V, Jasphin S, Kumar N
    J Tradit Complement Med, 2021 May;11(3):279-286.
    PMID: 34012874 DOI: 10.1016/j.jtcme.2020.08.004
    Background: Traditional Siddha Medicine advises using metal-based formulations to treat cancers. In the case of any toxicities during the therapy, Siddha physicians use Vernonia cinerea (VC) whole plant kashayam (crude aqueous extract-CAE) to reverse the toxic effects.

    Aim: To evaluate the nephroprotective activity of CAE and its fractions in cisplatin-induced nephrotoxicity and to assess whether they compromise the anticancer efficacy of cisplatin.

    Materials and methods: Cisplatin-induced renal damage was induced in Ehrlich Ascites Carcinoma (EAC) bearing mice during mild phase of tumor growth. CAE and its butanol (BF) and aqueous (AF) fractions were administered orally from the 5th day for five days. Nephroprotective potential (serum urea, creatinine, renal histology) and effect of VC on cisplatin anticancer efficacy (tumor volume, viable tumor cells, percentage increase in life span (% ILS)) were calculated.

    Result: CAE and its fractions significantly reversed the cisplatin-induced renal damage. CAE and BF treated animals showed regeneration of 50%-75% of proximal tubular cells. Compared to EAC control mice, the % ILS of the cisplatin-treated group was 244% and it was further extended to 379% after CAE administration. The % ILS in the CAE treated group was 1.6 times higher than the cisplatin alone treated group. GC-MS study showed the presence of astaxanthin and betulin.

    Conclusion: CAE of VC reverses cisplatin-induced kidney damage as well as regenerates proximal tubular epithelial cells, without compromising the anticancer effect of cisplatin. When CAE was further fractionated, the nephroprotective activity was retained, but the beneficial anticancer effect of cisplatin was compromised.

    Matched MeSH terms: Mice
  20. Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CL
    Mech Ageing Dev, 2018 Jul;173:92-103.
    PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004
    INTRODUCTION: Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.

    MATERIALS AND METHODS: Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA.

    RESULTS AND DISCUSSION: Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.

    Matched MeSH terms: Mice, Knockout; Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links