Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Ozone/analysis
  2. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2010 Dec;81(11):1446-53.
    PMID: 20875662 DOI: 10.1016/j.chemosphere.2010.09.004
    This study investigated the reaction kinetics and degradation mechanism of parabens (methylparaben, ethylparaben, propylparaben and butylparaben) during ozonation. Experiments were performed at pH 2, 6 and 12 to determine the rate constants for the reaction of protonated, undissociated and dissociated paraben with ozone. The rate constants for the reaction of ozone with dissociated parabens (3.3 × 10(9)-4.2 × 10(9)M(-1)s(-1)) were found to be 10(4) times higher than the undissociated parabens (2.5 × 10(5)-4.4 × 10(5)M(-1)s(-1)) and 10(7) times higher than with the protonated parabens (1.02 × 10(2)-1.38 × 10(2)M(-1)s(-1)). The second-order rate constants for the reaction between parabens with hydroxyl radicals were found to vary from 6.8 × 10(9) to 9.2 × 10(9)M(-1)s(-1). Characterization of degradation by-products (DBPs) formed during the ozonation of each selected parabens has been carried out using GCMS after silylation. Twenty DBPs formed during ozonation of selected parabens have been identified. Hydroxylation has been found to be the major reaction for the formation of the identified DBPs. Through the hydroxylation reaction, a variety of hydroxylated parabens was formed.
    Matched MeSH terms: Ozone/chemistry*
  3. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2009 Aug;76(9):1296-302.
    PMID: 19570564 DOI: 10.1016/j.chemosphere.2009.06.007
    This study was undertaken in order to understand the factors affecting the degradation of an insect repellent, N,N-diethyl-m-toluamide (DEET) by ozonation. Kinetic studies on DEET degradation were carried out under different operating conditions, such as varied ozone doses, pH values of solution, initial concentrations of DEET, and solution temperatures. The degradation of DEET by ozonation follows the pseudo-first-order kinetic model. The rate of DEET degradation increased exponentially with temperature in the range studied (20-50 degrees C) and in proportion with the dosage of ozone applied. The ozonation of DEET under different pH conditions in the presence of phosphate buffer occurred in two stages. During the first stage, the rate constant, k(obs), increased with increasing pH, whereas in the second stage, the rate constant, k(obs2), increased from pH 2.3 up to 9.9, however, it decreased when the pH value exceeded 9.9. In the case where buffers were not employed, the k(obs) were found to increase exponentially with pH from 2.5 to 9.2 and the ozonation was observed to occur in one stage. The rate of degradation decreased exponentially with the initial concentration of DEET. GC/MS analysis of the by-products from DEET degradation were identified to be N,N-diethyl-formamide, N,N-diethyl-4-methylpent-2-enamide, 4-methylhex-2-enedioic acid, N-ethyl-m-toluamide, N,N-diethyl-o-toluamide, N-acetyl-N-ethyl-m-toluamide, N-acetyl-N-ethyl-m-toluamide 2-(diethylamino)-1-m-tolylethanone and 2-(diethylcarbamoyl)-4-methylhex-2-enedioic acid. These by-products resulted from ozonation of the aliphatic chain as well as the aromatic ring of DEET during the degradation process.
    Matched MeSH terms: Ozone/metabolism*
  4. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
    Matched MeSH terms: Ozone/adverse effects
  5. Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, et al.
    Respirology, 2000 Jun;5(2):183-96.
    PMID: 10894109
    OBJECTIVE: Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998.

    METHODOLOGY: The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods.

    RESULTS: During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion).

    CONCLUSIONS: The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.

    Matched MeSH terms: Ozone/analysis
  6. Rajendran Royan NR, Sulong AB, Yuhana NY, Chen RS, Ab Ghani MH, Ahmad S
    PLoS One, 2018;13(5):e0197345.
    PMID: 29847568 DOI: 10.1371/journal.pone.0197345
    The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix.
    Matched MeSH terms: Ozone*
  7. Razak FA, Musa MY, Abusin HAM, Salleh NM
    J Coll Physicians Surg Pak, 2019 Apr;29(4):387-389.
    PMID: 30925969 DOI: 10.29271/jcpsp.2019.04.387
    Application of ozone is recommended for sterilisation in dental procedures. This study explored the antimicrobial effect of 0.1 ppm ozonated-water on selected common oral commensals. Based on deviation of their growth curves pattern upon ozone treatment, the inhibitory effect of ozone was determined. SEM examination of the ozone-treated microbes recorded its possible morphological effect. Findings suggested a bacteriostatic action of ozone when microbes were treated at the early phase, while, it was bactericidal when treated during the active phase of the growth cycle. Hence, suggesting rinsing the oral cavity with ozonated-water at 0.1 ppm immediately after tooth brushing may suppress microbial growth and slow biofilm formation. While, rinsing on already developed biofilm may result in microbial cell lysis that halted microbial growth and reduce microbial population in the biofilm. Both justify the great potential of ozone (0.1 ppm) for use as antimicrobial agent for the control of biofilm development in the oral cavity.
    Matched MeSH terms: Ozone/pharmacology*
  8. Othman M, Latif MT, Yee CZ, Norshariffudin LK, Azhari A, Halim NDA, et al.
    Ecotoxicol Environ Saf, 2020 May;194:110432.
    PMID: 32169727 DOI: 10.1016/j.ecoenv.2020.110432
    It is important to have good indoor air quality, especially in indoor office environments, in order to enhance productivity and maintain good work performance. This study investigated the effects of indoor office activities on particulate matter of less than 2.5 μm (PM2.5) and ozone (O3) concentrations, assessing their potential impact on human health. Measurements of indoor PM2.5 and O3 concentrations were taken every 24 h during the working days in five office environments located in a semi-urban area. As a comparison, the outdoor concentrations were derived from the nearest Continuous Air Quality Monitoring Station. The results showed that the average 24 h of indoor and outdoor PM2.5 concentrations were 3.24 ± 0.82 μg m-3 and 17.4 ± 3.58 μg m-3 respectively, while for O3 they were 4.75 ± 4.52 ppb and 21.5 ± 5.22 ppb respectively. During working hours, the range of PM2.5 concentrations were 1.00 μg m-3 to 6.10 μg m-3 while for O3 they were 0.10 ppb to 38.0 ppb. The indoor to outdoor ratio (I/O) for PM2.5 and O3 was <1, thus indicating a low infiltration of outdoor sources. The value of the hazard quotient (HQ) for all sampling buildings was <1 for both chronic and acute exposures, indicating that the non-carcinogenic risks are negligible. Higher total cancer risk (CR) value for outdoors (2.67E-03) was observed compared to indoors (4.95E-04) under chronic exposure while the CR value for acute exposure exceeded 1.0E-04, thus suggesting a carcinogenic PM2.5 risk for both the indoor and outdoor environments. The results of this study suggest that office activities, such as printing and photocopying, affect indoor O3 concentrations while PM2.5 concentrations are impacted by indoor-related contributions.
    Matched MeSH terms: Ozone/analysis*
  9. Ahmed Bhuiyan M, Rashid Khan HU, Zaman K, Hishan SS
    Environ Res, 2018 01;160:398-411.
    PMID: 29065379 DOI: 10.1016/j.envres.2017.10.013
    The aim of this study is to examine the impact of air pollutants, including mono-nitrogen oxides (NOx), nitrous oxide (N2O), sulfur dioxide (SO2), carbon dioxide emissions (CO2), and greenhouse gas (GHG) emissions on ecological footprint, habitat area, food supply, and biodiversity in a panel of thirty-four developed and developing countries, over the period of 1995-2014. The results reveal that NOx and SO2 emissions both have a negative relationship with ecological footprints, while N2O emission and real GDP per capita have a direct relationship with ecological footprints. NOx has a positive relationship with forest area, per capita food supply and biological diversity while CO2 emission and GHG emission have a negative impact on food production. N2O has a positive impact on forest area and biodiversity, while SO2 emissions have a negative relationship with them. SO2 emission has a direct relationship with per capita food production, while GDP per capita significantly affected per capita food production and food supply variability across countries. The overall results reveal that SO2, CO2, and GHG emissions affected potential habitat area, while SO2 and GHG emissions affected the biodiversity index. Trade liberalization policies considerably affected the potential habitat area and biological diversity in a panel of countries.
    Matched MeSH terms: Ozone/toxicity*
  10. Ng KY, Awang N
    Environ Monit Assess, 2018 Jan 06;190(2):63.
    PMID: 29306973 DOI: 10.1007/s10661-017-6419-z
    Frequent haze occurrences in Malaysia have made the management of PM10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM10 variation and good forecast of PM10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.
    Matched MeSH terms: Ozone/analysis
  11. Tan KC, Lim HS, Mat Jafri MZ
    Environ Sci Pollut Res Int, 2014 Jun;21(12):7567-77.
    PMID: 24599658 DOI: 10.1007/s11356-014-2697-y
    This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003-2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R = 0.811 for the southwest monsoon, R = 0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R = 0.752-0.802), indicating the model's accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.
    Matched MeSH terms: Ozone/analysis*
  12. Tay KS, Rahman NA, Abas MR
    Environ Sci Pollut Res Int, 2013 May;20(5):3115-21.
    PMID: 23054788 DOI: 10.1007/s11356-012-1223-3
    This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (•OH).
    Matched MeSH terms: Ozone/chemistry*
  13. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
    Matched MeSH terms: Ozone
  14. Ravivarman C, Jeyasenthil A, Ajay R, Nilofernisha N, Karthikeyan R, Rajkumar D
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S73-S77.
    PMID: 33149434 DOI: 10.4103/jpbs.JPBS_21_20
    Background: Eugenol released from zinc oxide eugenol (ZOE)-based sealants may cause irritation to the periapical tissues and has cytotoxic potential. Ozone therapy has numerous clinical applications with humans because of its bactericidal action, detoxifying effect, stimulation of angiogenesis, and wound-healing capacity. Therefore ozone can be incorporated in ZOE sealer to exploit these properties.

    Materials and Methods: Eugenol was ozonated using ozonator machine and the samples were divided into two groups: Group I: zinc oxide eugenol (n = 10) and Group II: zinc oxide-ozonated eugenol (OZOE; n = 10). The pH of the fresh sealer samples and the set samples was measured using calibrated pH meter after predetermined time intervals. Cytotoxicity of the set sealer was evaluated on mouse L929 fibroblasts using cellular metabolic assay.

    Results: pH of the samples in Group II was higher when compared to Group I. Group II showed higher cell viability than the Group I.

    Conclusion: OZOE sealers can be used as an alternative to the conventional ZOE sealers.

    Matched MeSH terms: Ozone
  15. Yi X, Yin S, Huang L, Li H, Wang Y, Wang Q, et al.
    Sci Total Environ, 2021 Jun 01;771:144644.
    PMID: 33736175 DOI: 10.1016/j.scitotenv.2020.144644
    Chlorine radical plays an important role in the formation of ozone and secondary aerosols in the troposphere. It is hence important to develop comprehensive emissions inventory of chlorine precursors in order to enhance our understanding of the role of chlorine chemistry in ozone and secondary pollution issues. Based on a bottom-up methodology, this study presents a comprehensive emission inventory for major atomic chlorine precursors in the Yangtze River Delta (YRD) region of China for the year 2017. Four primary chlorine precursors are considered in this study: hydrogen chloride (HCl), fine particulate chloride (Cl-) (Cl- in PM2.5), chlorine gas (Cl2), and hypochlorous acid (HClO) with emissions estimated for twelve source categories. The total emissions of these four species in the YRD region are estimated to be 20,424 t, 15,719 t, 1556 and 9331 t, respectively. The emissions of HCl are substantial, with major emissions from biomass burning and coal combustion, together accounting for 68% of the total HCl emissions. Fine particulate Cl- is mainly emitted from industrial processing, biomass burning and waste incineration. The emissions of Cl2 and HClO are mainly associated with usage of chlorine-containing disinfectants, for example, water treatment, wastewater treatment, and swimming pools. Emissions of each chlorine precursor are spatially allocated based on the characteristics of individual source category. This study provides important basic dataset for further studies with respect to the effects of chlorine chemistry on the formation of air pollution complex in the YRD region.
    Matched MeSH terms: Ozone
  16. Shah NNAK, Supian NAM, Hussein NA
    J Food Sci Technol, 2019 Jan;56(1):262-272.
    PMID: 30728568 DOI: 10.1007/s13197-018-3486-2
    This work studied the effectiveness of gaseous ozone disinfection on pummelo (Citrus Grandis L. Osbeck) fruit juice components. Unfiltered and filtered pummelo fruit juices were treated with gaseous ozone for up to 50 min with ozone concentration fixed at 600 mg/h. A microbiological and physicochemical properties analysis were conducted on the ozone-treated fruit juices samples. It was found that the survival rate of aerobic bacteria, yeast and mold in unfiltered pummelo fruit juice were higher compared to filtered juice, as the juice components acted as protective barriers to the microorganisms. The microorganisms' inactivation in pummelo fruit juices was also observed to have increased as the ozone treatment time increased. Significant effects on total colour difference, ascorbic acid content, and total phenolic content were also observed over increased ozone-treatment time. However, ozone was shown to be ineffective in activating PME activity in both types of juice. The experimental results of this study indicated that pummelo fruit juice components had significant effects on the effectiveness of gaseous ozone, however, the degree of the effects depends on the different fruit components (total soluble solids, total phenolic content). As a conclusion, filtered juice showed better quality characteristics in comparison to unfiltered juice post-ozone treatment.
    Matched MeSH terms: Ozone
  17. Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, et al.
    Sci Total Environ, 2020 Nov 10;742:140288.
    PMID: 32721711 DOI: 10.1016/j.scitotenv.2020.140288
    Air pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages. We identified information about the locations, causes, periods, and tree species exhibiting decline. Past air pollution was also reviewed. Most East Asian countries show declining trends in SO2 concentration in recent years, although Mongolia and Russia show increasing trends. Ozone (O3) concentrations are stable or gradually increasing in the East Asia region, with high maxima. Wet nitrogen (N) deposition was high in China and tropical countries, but low in Russia. The decline of trees and forests primarily occurred in the mid-latitudes of Japan, Korea, China, and Russia. Long-term large N deposition resulted in the N saturation phenomenon in Japan and China, but no clear forest health response was observed. Thereafter, forest decline symptoms, suspected to be caused by O3, were observed in Japan and China. In East Russia, tree decline occurred around industrial centers in Siberia. Haze events have been increasing in tropical and boreal forests, and particulate matter inhibits photosynthesis. In recent years, chronically high O3 concentrations, in conjunction with climate change, are likely have adverse effects on tree physiology. The effects of air pollution and related factors on tree decline are summarized. Recently, the effects of air pollution on tree decline have not been apparent under the changing climate, however, monitoring air pollution is indispensable for identifying the cause of tree decline. Further economic growth is projected in Southeast Asia and therefore, the monitoring network should be expanded to tropical and boreal forest zones. Countermeasures such as restoring urban trees and rural forests are important for ensuring future ecosystem services.
    Matched MeSH terms: Ozone
  18. Muhammad Nur Amir Azman, Yusilawati Ahmad Nor, Nur Husna Samsudin, Ma’an Fahmi Rashid Alkhatib, Yeow, Tshai Kim
    MyJurnal
    Carbon nanoparticles have been widely used in various applications. However, they are commonly known to have low dispersibility and chemical inertness which limit their practical ability in medical or biological area. Some studies have been performed to modify carbon nanoparticles such as carbon nanotubes using ultraviolet (UV)-Ozone system. However, little is known on the effects of such system towards other types of carbon nanoparticles such as mesoporous hollow carbon nanoparticles (MHCNs). Thus, in this study, improvement of MHCNs physiochemical properties have been studied using UV-Ozone treatment for the first time. The treatment was conducted in water as dispersant agent at ozone flowrate of 1.0 L/min and exposure time of 45 min. SEM images observed that MHCNs morphology and surface structure remain intact after the treatment. Observations on the dispersibility of MHCNs in phosphate buffered saline (PBS) solution shows that the dispersibility was improved compared to the untreated ones. This was supported by the low Z-average and PDI values of treated MHCNs obtained at ~400 nm and 0.2, respectively when compared to the untreated MHCNs which was obtained at 970 nm and 0.417, respectively. Thermogravimetric analysis (TGA) showed an increased in weight loss of treated MHCNs at the lower temperature compared to untreated MHCNs. Results from Fourier Transform Infrared (FTIR) showed an increase number of new functional groups that includes carboxylic acid group presence at the surface of treated MHCNs which contributes to the improvement of their dispersibility, thermal properties and chemical functionality. These findings opened a new possibility of using UV-Ozone treatment to improve physicochemical properties of MHCNs for medical area such as in drug delivery application in addition to their excellent storage and carrier system.
    Matched MeSH terms: Ozone
  19. Bharudin I, Abdul Rahim SN, Abu Bakar MF, Ibrahim SN, Kamaruddin S, Latif MT, et al.
    Data Brief, 2018 Aug;19:2416-2419.
    PMID: 30229114 DOI: 10.1016/j.dib.2018.07.020
    Lichen is a symbiotic organism that exists as a single composite body consisting of a mycobiont (fungus) and a photobiont (algae or a cyanobacterium). Many lichen species are considered as extremophiles due to their tolerance to radiation, desiccation, temperature and pollution. However, not all lichen species are tolerant to harsh environmental conditions as several species are sensitive for example to nitrogen, sulphur, acidity, heavy metals, halogens (e.g. fluoride) and ozone. Thus, to better understand why some lichens can withstand exposure to pollutants as opposed to those that are susceptible, we focused on the lichen species of Dirinaria known for their wide distribution in the tropics, subtropics and pantropical, and moderate tolerance to air pollution. Their moderate tolerance to air pollution affords them to thrive in good air quality environments as well as polluted air environments. Lichen samples of Dirinaria sp., UKM-J1 and UKM-K1, were respectively collected from two areas with different levels of air quality based on Air Pollutant Index or API (with index pollutant criteria of PM10, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide) in the outskirt of Jerantut (UKM-J1), a rural area in the middle of Peninsular Malaysia and the township of Klang (UKM-K1), in a busy area of the Klang Valley, Malaysia. API was monitored throughout 2012-2013 whereby the sample collection site in Klang showed markedly higher concentrations of pollutants in all the index pollutant criteria as compared to that of Jerantut. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from the lichen samples. Raw reads from both libraries were deposited in the NCBI database with the accession number SRP138994.
    Matched MeSH terms: Ozone
  20. Nazatul Syadia Zainordin, Nor Azam Ramli, Maher Elbayoumi
    Sains Malaysiana, 2017;46:197-207.
    ir quality has deteriorated in urban areas as a result of increased anthropogenic activities. Quantitative information on the influence of meteorological conditions on several pollutants in a tropical climate is still lacking. Real-time ozone (O3) and nitrogen dioxide (NO2) levels were measured nearby selected schools in Malaysia to examine the impact of meteorological factors on monitoring pollutants. The results showed the overall 10 min average concentrations of the main parameters during school holiday were 24 ppb (O3) and 33 ppb (NO2) while during school day the overall 10 min average concentrations were 26 ppb (O3) and 51 ppb (NO2). Although there are no minimum requirements for short-term exposure by MAAQG, if compared to 1 h average requirements, all concentrations were still below the suggested values. Regarding spatial distribution, a different trend in pollutant concentration among the schools was observed because of the influence of temperature (AT) and wind speed (WS). The results were verified by Pearson correlation, where significant correlations (p<0.01) were determined between air pollutants and meteorological factors, which were temperature, wind speed and relative humidity. Meanwhile, the distribution of O3 was moderately correlated with NO2. However, the results of multivariate analysis indicate that temperature and relative humidity had the most significant influence on the formation of O3. In summary, the results of this study showed that all precursors and meteorological parameters contribute to the production of O3. Hence, reducing O3 precursors, which are emitted by vehicles, is essential to lessening the exposure to O3
    Matched MeSH terms: Ozone
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links