Displaying publications 41 - 60 of 943 in total

Abstract:
Sort:
  1. Yong AL, Ooh KF, Ong HC, Chai TT, Wong FC
    Food Chem, 2015 Nov 1;186:32-6.
    PMID: 25976788 DOI: 10.1016/j.foodchem.2014.11.103
    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.
    Matched MeSH terms: Plants/chemistry; Plants, Medicinal/chemistry*
  2. Yoke-Kqueen C, Radu S
    J Biotechnol, 2006 Dec 15;127(1):161-6.
    PMID: 16860900
    Randomly amplified polymorphic DNA (RAPD) was used to analyzed 78 samples comprises of certified reference materials (soya and maize powder), raw seeds (soybean and maize), processed food and animal feed. Combination assay of two arbitrary primers in the RAPD analysis enable to distinguish genetically modified organism (GMO) reference materials from the samples tested. Dendrogram analysis revealed 13 clusters at 45% similarity from the RAPD. RAPD analysis showed that the maize and soybean samples were clustered differently besides the GMO and non-GMO products.
    Matched MeSH terms: Plants, Genetically Modified/genetics*
  3. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA
    PMID: 21584247 DOI: 10.1155/2011/543216
    Zingiber zerumbet Sm., locally known to the Malay as "Lempoyang," is a perennial herb found in many tropical countries, including Malaysia. The rhizomes of Z. zerumbet, particularly, have been regularly used as food flavouring and appetizer in various Malays' cuisines while the rhizomes extracts have been used in Malay traditional medicine to treat various types of ailments (e.g., inflammatory- and pain-mediated diseases, worm infestation and diarrhea). Research carried out using different in vitro and in vivo assays of biological evaluation support most of these claims. The active pharmacological component of Z. zerumbet rhizomes most widely studied is zerumbone. This paper presents the botany, traditional uses, chemistry, and pharmacology of this medicinal plant.
    Matched MeSH terms: Plants, Medicinal
  4. Yew CW, Kumar SV
    Mol Biol Rep, 2012 Feb;39(2):1783-90.
    PMID: 21625851 DOI: 10.1007/s11033-011-0919-7
    MicroRNAs (miRNAs) are small RNAs (sRNAs) with approximately 21-24 nucleotides in length. They regulate the expression of target genes through the mechanism of RNA silencing. Conventional isolation and cloning of miRNAs methods are usually technical demanding and inefficient. These limitations include the requirement for high amounts of starting total RNA, inefficient ligation of linkers, high amount of PCR artifacts and bias in the formation of short miRNA-concatamers. Here we describe in detail a method that uses 80 μg of total RNA as the starting material. Enhancement of the ligation of sRNAs and linkers with the use of polyethylene glycol (PEG8000) was described. PCR artifacts from the amplification of reverse-transcribed sRNAs were greatly decreased by using lower concentrations of primers and reducing the number of amplification cycles. Large concatamers with up to 1 kb in size with around 20 sRNAs/concatamer were obtained by using an optimized reaction condition. This protocol provide researchers with a rapid, efficient and cost-effective method for the construction of miRNA profiles from plant tissues containing low amounts of total RNA, such as fruit flesh and senescent leaves.
    Matched MeSH terms: Plants/genetics*
  5. Yeo SK, Ooi LG, Lim TJ, Liong MT
    Int J Mol Sci, 2009 Oct;10(8):3517-30.
    PMID: 20111692 DOI: 10.3390/ijms10083517
    Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised.
    Matched MeSH terms: Plants/metabolism*; Plants/chemistry
  6. Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY, Chan EWL
    J Ethnopharmacol, 2018 May 10;217:187-194.
    PMID: 29462698 DOI: 10.1016/j.jep.2018.02.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Piper sarmentosum Roxb. (PS), belonging to Piperaceae family, is an edible plant with medicinal properties. It is traditionally used by the Malays to treat headache and boost memory. Pharmacological studies revealed that PS exhibits anti-inflammatory, anti-oxidant, anti-acetylcholinesterase, and anti-depressant-like effects. In view of this, the present study aimed to investigate the anti-inflammatory actions of PS and its potential neuroprotective effects against beta-amyloid (Aβ)-induced microglia-mediated neurotoxicity.

    MATERIALS AND METHODS: The inhibitory effects of hexane (LHXN), dichloromethane (LDCM), ethyl acetate (LEA) and methanol (LMEOH) extracts from leaves of PS on Aβ-induced production and mRNA expression of pro-inflammatory mediators in BV-2 microglial cells were assessed using colorimetric assay with Griess reagent, ELISA kit and real-time RT-PCR respectively. Subsequently, MTT reduction assay was used to evaluate the neuroprotective effects of PS leaf extracts against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. The levels of tau proteins phosphorylated at threonine 231 (pT231) and total tau proteins (T-tau) were determined using ELISA kits.

    RESULTS: Polar extracts of PS leaves (LEA and LMEOH) reduced the Aβ-induced secretion of pro-inflammatory cytokines (IL-1β and TNF-α) in BV-2 cells by downregulating the mRNA expressions of pro-inflammatory cytokines. The inhibition of nitric oxide (NO) production could be due to the free radical scavenging activity of the extracts. In addition, conditioned media from Aβ-induced BV-2 cells pre-treated with LEA and LMEOH protected SH-SY5Y cells against microglia-mediated neurotoxicity. Further mechanistic study suggested that the neuroprotective effects were associated with the downregulation of phosphorylated tau proteins.

    CONCLUSIONS: The present study suggests that polar extracts of PS leaves confer neuroprotection against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y cells by attenuating tau hyperphosphorylation through their anti-inflammatory actions and could be a potential therapeutic agent for Alzheimer's disease.

    Matched MeSH terms: Plants, Medicinal
  7. Yeo BH, Tang TK, Wong SF, Tan CP, Wang Y, Cheong LZ, et al.
    Front Pharmacol, 2021;12:631136.
    PMID: 33833681 DOI: 10.3389/fphar.2021.631136
    Edible bird's nest (EBN) is recognized as a nourishing food among Chinese people. The efficacy of EBN was stated in the records of traditional Chinese medicine and its activities have been reported in many researches. Malaysia is the second largest exporter of EBNs in the world, after Indonesia. For many years, EBN trade to China was not regulated until August 2011, when a safety alert was triggered for the consumption of EBNs. China banned the import of EBNs from Malaysia and Indonesia due to high level of nitrite. Since then, the Malaysia government has formulated Malaysia Standards for swiftlet farming (MS 2273:2012), edible bird's nest processing plant design and management (MS 2333:2010), and edible bird's nest product quality (MS 2334:2011) to enable the industry to meet the specified standards for the export to China. On the other hand, Indonesia's EBN industry formulated a standard operating procedure (SOP) for exportation to China. Both countries can export EBNs to China by complying with the standards and SOPs. EBN contaminants may include but not limited to nitrite, heavy metals, excessive minerals, fungi, bacteria, and mites. The possible source of contaminants may come from the swiftlet farms and the swiftlets or introduced during processing, storage, and transportation of EBNs, or adulterants. Swiftlet house design and management, and EBN processing affect the bird's nest color. Degradation of its optical quality has an impact on the selling price, and color changes are tied together with nitrite level. In this review, the current and future prospects of EBNs in Malaysia and Indonesia in terms of their quality, and the research on the contaminants and their effects on EBN color changes are discussed.
    Matched MeSH terms: Plants, Edible
  8. Yee, Xing You, Suzana Shahar, Hasnah Haron, Hanis Mastura Yahya, Normah Che Din
    Jurnal Sains Kesihatan Malaysia, 2019;17(3):139-148.
    MyJurnal DOI: 10.17576/JSKM-2019-16
    Ulam is fresh traditional Malaysian vegetables which normally consumed in raw form or after a short blanching process.It contains high antioxidants and polyphenols. However, there is limited study about the relationship between ulam consumption and cognitive status. Thus, a cross sectional study was conducted to determine the relation with cognitive function among 132 middle-aged Malays adults (45-59 years old), ecruited by convenient sampling from low income residences in Klang Valley. Respondents were interviewed to obtain data on sociodemography, dietary intake and total ulam intake and also measured for anthropometric parameters at respective community centres. Cognitive status was measured using Digit Span (attention and working memory), Rey auditory verbal learning test (RAVLT) (verbal memory) and comprehensive trail making test (CTMT) (cognitive flexibility). The average ulam intake by the respondents was 15.1 ± 8.2g/day and the top five highest consumed ulam were petai (68.1%), pucuk paku (62.9%), ulam raja (56.8%), pegaga (54.6%) and kesum (44.7%).There was a significant correlation between ulam intake with Digit Span (r = 0.265, p = 0.006), total immediate recall of RAVLT (r = 0.427, p < 0.001) and CTMT (r = 0.257, p = 0.007). Analysis of multiple regression indicated that total ulam intake was a significant predictor for Digit Span (R2 = 0.152, p < 0.05), RAVLT (R2 = 0.335, p = 0.001) and CTMT (R2 = 0.310, p < 0.001). In conclusion, this study showed that ulam has the potential to protect against cognitive decline, however, randomized control trials should be conducted to determine the efficacy of the ulam as neuroprotective agent.
    Matched MeSH terms: Plants, Medicinal
  9. Yeap WC, Namasivayam P, Ho CL
    Plant Sci, 2014 Oct;227:90-100.
    PMID: 25219311 DOI: 10.1016/j.plantsci.2014.07.005
    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses.
    Matched MeSH terms: Plants/genetics*
  10. Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL
    Plant Cell Environ, 2019 05;42(5):1657-1673.
    PMID: 30549047 DOI: 10.1111/pce.13503
    Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
    Matched MeSH terms: Plants, Genetically Modified
  11. Yavari S, Malakahmad A, Sapari NB, Yavari S, Khan E
    J Environ Manage, 2017 Nov 01;202(Pt 1):225-231.
    PMID: 28735207 DOI: 10.1016/j.jenvman.2017.07.030
    Application of urea manufacturing wastewater to teak (Tectona grandis) trees, a fast growing tropical timber plants, is an environmentally-friendly and cost-effective alternative for treatment of nitrogen-rich wastewater. However, the plant growth is strongly limited by lack of phosphorus (P) and potassium (K) elements when the plants are irrigated with wastewater containing high concentration of nitrogen (N). A greenhouse experiment was conducted to optimize the efficiency of teak-based remediation systems in terms of nutrient balance. Twelve test solutions consisted of 4 levels of P (95, 190, 570, 1140 mgL-1) and 3 levels of K (95, 190, 570 mgL-1) with a constant level of N (190 mgL-1) were applied to teak seedlings every four days during the study period. Evapotranspiration rate, nutrient removal percentage, leaf surface area, dry weight and nutrient contents of experimental plants were determined and compared with those grown in control solution containing only N (N:P:K = 1:0:0). Teak seedlings grown in units with 1:0.5:1 N:P:K ratio were highly effective at nutrient removal upto 47%, 48% and 49% for N, P and K, respectively. Removal efficiency of teak plants grown in other experimental units decreased with increasing P and K concentrations in test solutions. The lowest nutrient removal and plant growth were recorded in units with 1:6:0.5 N:P:K ratio which received the highest ratio of P to K. The findings indicated that teak seedlings functioned effectively as phytoremediation plants for N-rich wastewater treatment when they were being supplied with proper concentrations of P and K.
    Matched MeSH terms: Plants
  12. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Environ Sci Pollut Res Int, 2018 Apr;25(12):11351-11363.
    PMID: 29417482 DOI: 10.1007/s11356-018-1345-3
    Phytoremediation has been applied as a promising and cost-effective technique for removing nutrient pollutants from wastewater. In this study, the effect of fullerene C60 was assessed on enhancing the phytoremediation efficiency of teak plants over a period of 1 month. Teak plants were supplied with fullerene C60 (0, 25, or 50 mg L-1) and fed daily with two types of urea plant wastewater (with and without adding optimum ratio of phosphorus and potassium). The required volume of wastewater by the teak plants, nitrogen removal percentage, plant growth parameters (plant height, number of leaves, leaf surface area, and dry biomass), and nutrient content was recorded throughout the study. The results showed that addition of 25 mg L-1 fullerene C60 to urea plant wastewater could increase water uptake and nitrogen recovery of the teak plants. Plant growth and nutrient contents of teak plants were also increased in the presence of 25 mg L-1 fullerene C60. However, addition of 50 mg L-1 fullerene C60 to the wastewater decreased the values for water uptake and nitrogen recovery. The findings indicated that addition of proper amount of fullerene C60 to the teak-based remediation system can increase the efficiency of the plants for nitrogen removal.
    Matched MeSH terms: Plants
  13. Yau Hsiung W, Abdul Kadir H
    PMID: 21423690 DOI: 10.1155/2011/293060
    The anticancer potential of Leea indica, a Chinese medicinal plant was investigated for the first time. The crude ethanol extract and fractions (ethyl acetate, hexane, and water) of Leea indica were evaluated their cytotoxicity on various cell lines (Ca Ski, MCF 7, MDA-MB-435, KB, HEP G2, WRL 68, and Vero) by MTT assay. Leea indica ethyl acetate fraction (LIEAF) was found showing the greatest cytotoxic effect against Ca Ski cervical cancer cells. Typical apoptotic morphological changes such as DNA fragmentation and chromatin condensation were observed in LIEAF-treated cells. Early signs of apoptosis such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential indicated apoptosis induction. This was further substantiated by dose- and time-dependent accumulation of sub-G(1) cells, depletion of intracellular glutathione, and activation of caspase-3. In conclusion, these results suggested that LIEAF inhibited cervical cancer cells growth by inducing apoptosis and could be developed as potential anticancer drugs.
    Matched MeSH terms: Plants, Medicinal
  14. Yasunaga T, Wolski A, Taszakowski A
    Zootaxa, 2023 Dec 07;5382(1):152-169.
    PMID: 38221267 DOI: 10.11646/zootaxa.5382.1.17
    Three new species of the fungal-inhabiting plant bug genus Punctifulvius Schmitz, 1978 (Cylapinae: Fulviini) are described, namely P. aleksanderi n. sp. from Selangor, Malaysia, P. parvus n. sp. from East Kalimantan, Indonesia, and P. sakaerat n. sp. from Nakhon Ratchasima, Thailand. The present discovery represents the first record of the genus from the Oriental Region. Punctifulvius members are now confirmed to be widespread from the cold temperate climatic zones in the eastern Palearctic regions, across the tropics of the Oriental Region, to the temperate rainforest of Australia. Punctifulvius kerzhneri Schmitz, 1978 is recorded from Taiwan for the first time. The systematic position of Teratofulvioides Carvalho & Lorenzato, 1978 is discussed, and its single species Teratofulvioides punctatus Carvalho & Lorenzato, 1978 is redescribed. Color adult habitus images of Punctifulvius aleksanderi, P. kerzhneri, P. parvus, P. sakaerat, and Teratofulvius punctatus, images of male (P. parvus and P. sakaerat) and female (P. aleksanderi) genitalic structures, as well as scanning electron micrographs of selected structures of P. aleksanderi, P. kerzhneri, P. parvus, P. sakaerat, and T. punctatus are provided. Key to the species of Punctifulvius is given.
    Matched MeSH terms: Plants
  15. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Plants, Medicinal
  16. Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, et al.
    Int J Nanomedicine, 2021;16:7891-7941.
    PMID: 34880614 DOI: 10.2147/IJN.S328135
    Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
    Matched MeSH terms: Plants, Medicinal*
  17. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2015;12(1):23-31.
    PMID: 25552915 DOI: 10.7150/ijms.10019
    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
    Matched MeSH terms: Plants, Medicinal/chemistry
  18. Yap C, Mohd Fitri MR, Mazyhar Y, Tan S
    Centella asiatica is widely used as a medicinal plant in Malaysia and other parts of the world. In the present study, the growth and uptake of heavy metal by C. asiatica were determined based on the plant exposure to different treatment of metal-contaminated soils under laboratory conditions. Heavy metals uptake in different parts of the plants namely roots, stems and leaves were determined. In general, it was found that the metal uptake capacity followed the order: roots > stems > leaves. Since a close positive relationship was established between the concentrations of metal accumulated in different parts of the plant and the metal levels in the most contaminated soil, C. asiatica has the potential of being used as a biomonitoring plant for heavy metal pollution in the polluted soils.
    Matched MeSH terms: Plants, Medicinal
  19. Yang SK, Tan NP, Chong CW, Abushelaibi A, Lim SH, Lai KS
    Evol Bioinform Online, 2021;17:1176934320938391.
    PMID: 34017165 DOI: 10.1177/1176934320938391
    Antibiotic resistance is a major global health issue that has seen alarming rates of increase in all parts of the world over the past two decades. The surge in antibiotic resistance has resulted in longer hospital stays, higher medical costs, and elevated mortality rates. Constant attempts have been made to discover newer and more effective antimicrobials to reduce the severity of antibiotic resistance. Plant secondary metabolites, such as essential oils, have been the major focus due to their complexity and bioactive nature. However, the underlying mechanism of their antimicrobial effect remains largely unknown. Understanding the antimicrobial mode of action of essential oils is crucial in developing potential strategies for the use of essential oils in a clinical setting. Recent advances in genomics and proteomics have enhanced our understanding of the antimicrobial mode of action of essential oils. We might well be at the dawn of completing a mystery on how essential oils carry out their antimicrobial activities. Therefore, an overview of essential oils with regard to their antimicrobial activities and mode of action is discussed in this review. Recent approaches used in identifying the antimicrobial mode of action of essential oils, specifically from the perspective of genomics and proteomics, are also synthesized. Based on the information gathered from this review, we offer recommendations for future strategies and prospects for the study of essential oils and their function as antimicrobials.
    Matched MeSH terms: Plants
  20. Yajid AI, Ab Rahman HS, Wong MPK, Wan Zain WZ
    Malays J Med Sci, 2018 Feb;25(1):5-15.
    PMID: 29599630 DOI: 10.21315/mjms2018.25.1.2
    The incidence of cancer is increasing each year, which generates concerns regarding the efficacy of the current treatment options. This has caused patients to seek alternatives to complement or to replace surgery, chemotherapy and radiotherapy.Annona muricataand other plants have been shown to have promising compounds that can be utilised in the treatment of cancer. Native to the tropical and subtropical parts of the world,A. muricataplant extracts contain compounds that are particularly effective against cancer cells. In light of increasing concerns regarding the limitations of cancer treatment in hospitals, this review attempts to highlight the benefits ofA. muricataand its potential to be integrated as one of the treatment options against cancer.
    Matched MeSH terms: Plants
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links