Displaying publications 41 - 60 of 254 in total

Abstract:
Sort:
  1. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: Bone Regeneration/drug effects*
  2. Yahaya B, McLachlan G, Collie DD
    ScientificWorldJournal, 2013;2013:871932.
    PMID: 23533365 DOI: 10.1155/2013/871932
    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models.
    Matched MeSH terms: Regeneration*
  3. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
    Matched MeSH terms: Bone Regeneration/drug effects*; Bone Regeneration/physiology
  4. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
    Matched MeSH terms: Regeneration/drug effects*
  5. John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK
    Int J Nanomedicine, 2015;10:4267-77.
    PMID: 26170663 DOI: 10.2147/IJN.S83777
    Neuroregeneration is the regrowth or repair of nervous tissues, cells, or cell products involved in neurodegeneration and inflammatory diseases of the nervous system like Alzheimer's disease and Parkinson's disease. Nowadays, application of nanotechnology is commonly used in developing nanomedicines to advance pharmacokinetics and drug delivery exclusively for central nervous system pathologies. In addition, nanomedical advances are leading to therapies that disrupt disarranged protein aggregation in the central nervous system, deliver functional neuroprotective growth factors, and change the oxidative stress and excitotoxicity of affected neural tissues to regenerate the damaged neurons. Carbon nanotubes and graphene are allotropes of carbon that have been exploited by researchers because of their excellent physical properties and their ability to interface with neurons and neuronal circuits. This review describes the role of carbon nanotubes and graphene in neuroregeneration. In the future, it is hoped that the benefits of nanotechnologies will outweigh their risks, and that the next decade will present huge scope for developing and delivering technologies in the field of neuroscience.
    Matched MeSH terms: Nerve Regeneration*
  6. Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, et al.
    PLoS One, 2014;9(6):e98770.
    PMID: 24911365 DOI: 10.1371/journal.pone.0098770
    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model.
    Matched MeSH terms: Regeneration*
  7. Yahya WN, Kadri NA, Ibrahim F
    Sensors (Basel), 2014 Jul 02;14(7):11714-34.
    PMID: 24991941 DOI: 10.3390/s140711714
    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.
    Matched MeSH terms: Liver Regeneration/physiology*
  8. Ding SLS, Kumar S, Mok PL
    Int J Mol Sci, 2017 Jul 28;18(8).
    PMID: 28788088 DOI: 10.3390/ijms18081406
    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.
    Matched MeSH terms: Regeneration
  9. Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, et al.
    ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
    PMID: 30372014 DOI: 10.1021/acsami.8b16645
    The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.
    Matched MeSH terms: Guided Tissue Regeneration/methods*
  10. Ahmad Nazri MUI, Mahmud MH, Saidi B, Mat Isa MN, Ehsak Z, Ross O, et al.
    Heliyon, 2021 Feb;7(2):e06307.
    PMID: 33681499 DOI: 10.1016/j.heliyon.2021.e06307
    The polychaete Diopatra claparedii Grube, 1878 is among those organisms successfully carrying out full body regeneration, including the whole nervous system. Thus, D. claparedii potentially can be regarded for the nervous system regeneration (NSR) study. However, data on the property of its nervous system and the NSR profile are still lacking. In this study, we investigated the morphology of D. claparedii anterior nervous system (ANS) and examined the cellular and molecular profiles on its early anterior NSR. The nervous system of D. claparedii consists of a symmetry brain with nerves branching off, circumpharyngeal connectives that connect the brain and nerve cord as well as obvious segmental ganglia. Moreover, we identified changes in the cellular condition of the ganglionic cells in the regenerating tissue, such as the accumulation of lysosomes and lipofuscins, elongated mitochondria and multiple nucleoli. Furthermore, mRNA of tissues at two regenerating stages, as well as intact tissue (non-regenerating), were sequenced with Illumina sequencer. We identified from these tissues 37,248 sequences, 18 differential expressed proteins of which upregulated were involved in NSR with noelin-like isoform X2 turned up to be the highest being expressed. Our results highlight the cellular and molecular changes during early phase of NSR, thus providing essential insights on regeneration within Annelida and understanding the neurodegenerative diseases.
    Matched MeSH terms: Regeneration
  11. Hussin HM, Lawi MM, Haflah NHM, Kassim AYM, Idrus RBH, Lokanathan Y
    Tissue Eng Regen Med, 2020 04;17(2):237-251.
    PMID: 32036567 DOI: 10.1007/s13770-019-00235-6
    BACKGROUND: Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model.

    METHODS: Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy.

    RESULTS: NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA.

    CONCLUSION: NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.

    Matched MeSH terms: Nerve Regeneration
  12. Ismarul IN, Ishak Y, Ismail Z, Mohd Shalihuddin WM
    Med J Malaysia, 2004 May;59 Suppl B:57-8.
    PMID: 15468817
    Various proportions of chitosan/collagen films (70/30% to 95/05%) w/w were prepared and evaluated for its suitability as skin regenerating scaffold. Interactions between chitosan and collagen were studied using Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Colorimetry (DSC). Scanning Electron Microscope (SEM) was used to investigate the morphology of the blend. Mechanical properties were evaluated using a Universal Testing Machine (UTM). The chitosan/collagen films were found to swell proportionally with time until it reaches equilibrium. FTIR spectroscopy indicated no chemical interaction between the components of the blends. DSC data indicated only one peak proving that these two materials are compatible at all proportions investigated. SEM micrographs also indicated good homogeneity between these two materials.
    Matched MeSH terms: Regeneration/physiology*
  13. Hassan MI, Sultana N
    3 Biotech, 2017 Aug;7(4):249.
    PMID: 28714045 DOI: 10.1007/s13205-017-0889-0
    Considering the important factor of bioactive nanohydoxyapatite (nHA) to enhance osteoconductivity or bone-bonding capacity, nHA was incorporated into an electrospun polycaprolactone (PCL) membrane using electrospinning techniques. The viscosity of the PCL and nHA/PCL with different concentrations of nHA was measured and the morphology of the electrospun membranes was compared using a field emission scanning electron microscopy. The water contact angle of the nanofiber determined the wettability of the membranes of different concentrations. The surface roughness of the electrospun nanofibers fabricated from pure PCL and nHA/PCL was determined and compared using atomic force microscopy. Attenuated total reflectance Fourier transform infrared spectroscopy was used to study the chemical bonding of the composite electrospun nanofibers. Beadless nanofibers were achieved after the incorporation of nHA with a diameter of 200-700 nm. Results showed that the fiber diameter and the surface roughness of electrospun nanofibers were significantly increased after the incorporation of nHA. In contrast, the water contact angle (132° ± 3.5°) was reduced for PCL membrane after addition of 10% (w/w) nHA (112° ± 3.0°). Ultimate tensile strengths of PCL membrane and 10% (w/w) nHA/PCL membrane were 25.02 ± 2.3 and 18.5 ± 4.4 MPa. A model drug tetracycline hydrochloride was successfully loaded in the membrane and the membrane demonstrated good antibacterial effects against the growth of bacteria by showing inhibition zone for E. coli (2.53 ± 0.06 cm) and B. cereus (2.87 ± 0.06 cm).
    Matched MeSH terms: Bone Regeneration
  14. Zainul Azlan N, Mohd Yusof YA, Alias E, Makpol S
    PMID: 31428175 DOI: 10.1155/2019/8394648
    Background: Loss of skeletal muscle mass, strength, and function due to gradual decline in the regeneration of skeletal muscle fibers was observed with advancing age. This condition is known as sarcopenia. Myogenic regulatory factors (MRFs) are essential in muscle regeneration as its activation leads to the differentiation of myoblasts to myofibers. Chlorella vulgaris is a coccoid green eukaryotic microalga that contains highly nutritious substances and has been reported for its pharmaceutical effects. The aim of this study was to determine the effect of C. vulgaris on the regulation of MRFs and myomiRs expression in young and senescent myoblasts during differentiation in vitro.

    Methods: Human skeletal muscle myoblast (HSMM) cells were cultured and serial passaging was carried out to obtain young and senescent cells. The cells were then treated with C. vulgaris followed by differentiation induction. The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, PTEN, and MYH2 genes and miR-133b, miR-206, and miR-486 was determined in untreated and C. vulgaris-treated myoblasts on Days 0, 1, 3, 5, and 7 of differentiation.

    Results: The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, and PTEN in control senescent myoblasts was significantly decreased on Day 0 of differentiation (p<0.05). Treatment with C. vulgaris upregulated Pax7, Myf5, MEF2C, IGF1R, MYOG, and PTEN in senescent myoblasts (p<0.05) and upregulated Pax7 and MYOG in young myoblasts (p<0.05). The expression of MyoD1 and Myf5 in young myoblasts however was significantly decreased on Day 0 of differentiation (p<0.05). During differentiation, the expression of these genes was increased with C. vulgaris treatment. Further analysis on myomiRs expression showed that miR-133b, miR-206, and miR-486 were significantly downregulated in senescent myoblasts on Day 0 of differentiation which was upregulated by C. vulgaris treatment (p<0.05). During differentiation, the expression of miR-133b and miR-206 was significantly increased with C. vulgaris treatment in both young and senescent myoblasts (p<0.05). However, no significant change was observed on the expression of miR-486 with C. vulgaris treatment.

    Conclusions: C. vulgaris demonstrated the modulatory effects on the expression of MRFs and myomiRs during proliferation and differentiation of myoblasts in culture. These findings may indicate the beneficial effect of C. vulgaris in muscle regeneration during ageing thus may prevent sarcopenia in the elderly.

    Matched MeSH terms: Regeneration
  15. Mukhopadhyay R, Bhaduri D, Sarkar B, Rusmin R, Hou D, Khanam R, et al.
    J Hazard Mater, 2020 02 05;383:121125.
    PMID: 31541959 DOI: 10.1016/j.jhazmat.2019.121125
    Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
    Matched MeSH terms: Regeneration
  16. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
    Matched MeSH terms: Regeneration/physiology*
  17. Ming NGJ, Binte Mostafiz S, Johon NS, Abdullah Zulkifli NS, Wagiran A
    Plants (Basel), 2019 May 30;8(6).
    PMID: 31151227 DOI: 10.3390/plants8060144
    The development of efficient tissue culture protocol for somatic embryo would facilitate the genetic modification breeding program. The callus induction and regeneration were studied by using different parameters i.e., auxins, cytokinins, and desiccation treatment. Scanning electron microscopy and histological analysis were performed to identify the embryogenic callus for regeneration. The callus percentage results showed that MS (Murashige and Skoog) basal medium supplemented with 3 mg/L 2, 4-D and 30g/L maltose were the optimal callus induction medium for MR220 (80%) and MR220-CL2 (95%). The morphology of the embryogenic callus was confirmed by the SEM (Scanning Electron Microscopy) (presence of extracellular matrix surface network) and later by histological analysis. Finally, MS media supplemented with 0.5 mg/L NAA (Naphthalene Acetic Acid), 2 mg/L kin, and 1 mg/L BAP were selected as the optimum regeneration media treatment while callus desiccated for 48 h was proved to produce more plantlets in MR220 (60%) and MR220-CL2 (73.33%) compared to control treatment (without desiccation). The protocol presented here showed the necessity for the inclusion of partial desiccation as an important step in the tissue culture protocol of Malaysian indica rice genotypes in order to enhance their regeneration potential.
    Matched MeSH terms: Regeneration
  18. Muhammad SA, Nordin N, Mehat MZ, Fakurazi S
    Cell Tissue Res, 2019 Feb;375(2):329-344.
    PMID: 30084022 DOI: 10.1007/s00441-018-2884-0
    Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
    Matched MeSH terms: Regeneration*
  19. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p 

    Matched MeSH terms: Bone Regeneration
  20. Azhar MM, Sara TA
    Med J Malaysia, 2004 Dec;59(5):578-84.
    PMID: 15889558
    A study of nerve regeneration through a 1cm defect in the peroneal component of the sciatic nerve was performed on sixteen rabbits. Either silicone or polytetrafluoroethylene (PTFE) tubes or nerve graft were used to bridge the defect and the opposite limb was not operated upon. The rabbits that underwent nerve grafting had favourable findings. In the PTFE group, a nerve-like structure was seen at the former gap site and histology confirmed viable axons within the tubes and distal to the repair site. In the silicone tube group, there were no myelinated axons demonstrated. The axonal count for the grafted nerves and the nerves repaired with PTFE tube are on average 80.4% and 38.2% of that of the unoperated nerve, respectively. On average, the percentage anterior compartment muscle weight (expressed as a percentage of the unoperated limb) for the silicone, PTFE and nerve graft groups are 42.3%, 42.1%, and 72.7% respectively. The results show that although, PTFE conduits can bridge a nerve defect of 1cm, nerve grafting provides a superior and more predictable outcome.
    Matched MeSH terms: Nerve Regeneration/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links