Displaying publications 41 - 60 of 172 in total

Abstract:
Sort:
  1. Al-Haddad AY, Kacharaju KR, Haw LY, Yee TC, Rajantheran K, Mun CS, et al.
    J Contemp Dent Pract, 2020 Nov 01;21(11):1218-1221.
    PMID: 33850066
    AIM: This study aimed to evaluate the effect of the prior application of intracanal medicaments on the bond strength of OrthoMTA (mineral trioxide aggregate) and iRoot SP to the root dentin.

    MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.

    RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.

    CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.

    CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.

    Matched MeSH terms: Silicates
  2. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM
    Int J Biol Macromol, 2020 Nov 15;163:756-765.
    PMID: 32634511 DOI: 10.1016/j.ijbiomac.2020.07.014
    In this research, an attempt to develop zwitterion composite adsorbent is conducted by modifying chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an aluminosilicate mineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-epichlorohydrin/zeolite (CHS-ECH/ZL) is performed multifunctional tasks by removing two structurally different cationic (methylene blue dye, MB), and anionic (reactive red 120 dye, RR120) dyes from aqueous solutions. The surface property, crystallinity, morphology, functionality, and charge of the CHS-ECH/ZL are analyzed using BET, XRD, SEM, FTIR, and pHpzc, analyses, respectively. The influence of pertinent parameters namely CHS-ECH/ZL dosage (0.02-0.5 g), solution pH (4-10), temperature (303-323K), initial dye concentration (30-400 mg/L), and contact time (0-600 min) on the MB and RR120 removal are tested. The research findings revealed that the adsorption isotherm at equilibrium well explained in according to the Freundlich isotherm model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and 284.2 mg/g for MB and RR120 respectively at 30 °C. The mechanism of MB and RR120 adsorption onto the CHS-ECH/ZL indicates various types of interactions namely, electrostatic interaction, hydrogen bonding, and Yoshida H-bonding in addition to n-π interaction. Overall, this research introduces CHS-ECH/ZL composite as an eco-friendly zwitterion adsorbent with good applicability towards the two structurally different cationic and anionic dyes from aqueous environment.
    Matched MeSH terms: Aluminum Silicates
  3. Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;118:111466.
    PMID: 33255048 DOI: 10.1016/j.msec.2020.111466
    This work is aimed to develop a biocompatible, bactericidal and mechanically stable biomaterial to overcome the challenges associated with calcium phosphate bioceramics. The influence of chemical composition on synthesis temperature, bioactivity, antibacterial activity and mechanical stability of least explored calcium silicate bioceramics was studied. The current study also investigates the biomedical applications of rankinite (Ca3Si2O7) for the first time. Sol-gel combustion method was employed for their preparation using citric acid as a fuel. Differential thermal analysis indicated that the crystallization of larnite and rankinite occurred at 795 °C and 1000 °C respectively. The transformation of secondary phases into the desired product was confirmed by XRD and FT-IR. TEM micrographs showed the particle size of larnite in the range of 100-200 nm. The surface of the samples was entirely covered by the dominant apatite phase within one week of immersion. Moreover, the compressive strength of larnite and rankinite was found to be 143 MPa and 233 MPa even after 28 days of soaking in SBF. Both samples prevented the growth of clinical pathogens at a concentration of 2 mg/mL. Larnite and rankinite supported the adhesion, proliferation and osteogenic differentiation of hBMSCs. The variation in chemical composition was found to influence the properties of larnite and rankinite. The results observed in this work signify that these materials not only exhibit faster biomineralization ability, excellent cytocompatibility but also enhanced mechanical stability and antibacterial properties.
    Matched MeSH terms: Silicates
  4. Islam R, Toida Y, Chen F, Tanaka T, Inoue S, Kitamura T, et al.
    Int Endod J, 2021 Oct;54(10):1902-1914.
    PMID: 34096634 DOI: 10.1111/iej.13587
    AIM: To evaluate the dental pulp response to a novel mineral trioxide aggregate containing phosphorylated pullulan (MTAPPL) in rats after direct pulp capping.

    METHODS: Ninety-six cavities were prepared in the maxillary first molars of 56 male Wistar rats. The dental pulps were intentionally exposed and randomly divided into four groups according to the application of pulp capping materials: MTAPPL; phosphorylated pullulan (PPL); a conventional MTA (Nex-Cem MTA, NCMTA; positive control); and Super-Bond (SB; negative control). All cavities were restored with SB and observed for pulpal responses at 1-, 3-, 7- and 28-day intervals using a histological scoring system. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-test with Bonferroni's correction, and the level of significance was set at 0.05. DMP1 and CD34 antigen were used to evaluate odontoblast differentiation and pulpal vascularization, respectively.

    RESULTS: On day 1, mild inflammatory cells were present in MTAPPL and NCMTA groups; fewer inflammatory cells were present in the PPL, whereas SB was associated with a mild-to-moderate inflammatory response. A significant difference was observed between PPL and SB (p  .05). SB exhibited incomplete mineralized tissue barriers, significantly different from NCMTA, MTAPPL and PPL (p 

    Matched MeSH terms: Silicates
  5. Teng, Iyu Lin, Ismail Bahari, Muhamad Samudi Yasir
    MyJurnal
    In Malaysia, mineral processing plant is one of the Naturally Occurring Radioactive Material (NORM) processing industries controlled by the Atomic Energy Licensing Board (AELB) through the enforcement of Atomic Energy Licensing Act 1984 (Act 304). The activities generated waste which is called as TENORM wastes. TENORM wastes are mainly found in thorium hydroxide from the processing of xenotime and monazite, and iron oxide and red gypsum from the processing of ilmenite. Other TENORM wastes are scales and sludge from the oil and gas industries, tin slag produced from the smelting of tin, and ilmenite, zircon,
    and monazite produced from the processing of tin tailing (amang). The environmental and radiological monitoring program is needed to ensure that the TENORM wastes did not caused any contamination to the environment. The wastes vary in the types of samples, parameters of analysis as well as the frequency of monitoring based on license’s conditions issued by the AELB. The main objective of this study is to assess the suitability of license’s condition and the monitoring program required in oil and gas, and mineral processing
    industries. Study was done by assessing the data submitted to the AELB in order to comply with the licensing requirement. This study had found out that there are a few of license’s conditions that need to be reviewed accordingly based on the processing activity.
    Matched MeSH terms: Silicates
  6. Rajan, S., Awang, H., Pooi, A.H., Hassan, H., Devi, S.
    Ann Dent, 2008;15(1):5-10.
    MyJurnal
    Objective: An in vitro assessment of MG-63 human osteosarcoma cells' alkaline phosphatase (ALP) activity when in contact with calcium hydroxide powder (CH), paste (CHP) and grey mineral trioxide aggregate (MTA). Methods: MG-63 cells were seeded to the three selected materials for durations of 0.25, 0.5, 1, 24, 48 and 72 hours. BCIP-NBT assay was used and ALP activity quantified using ELISA reader at 410 nm. Results: The overall analysis for ALP activity indicated significant interaction between test materials and control (maintenance medium). Subsequently, the test materials were paired and analysed for initial (0.25, 0.5, 1 hour) and delayed response (24, 48 and 72 hours). During the initial response, CH exhibited an increased ALP activity compared to MTA. This interaction was not dependant on duration. The delayed response exhibited elevated ALP activity with CHP when compared to MTA and CH. The interaction of CHP was dependant on duration. Conclusion: All three materials exhibited increased ALP activity.
    Matched MeSH terms: Silicates
  7. Smith CE, Turner LH
    Bull World Health Organ, 1961;24(1):35-43.
    PMID: 20604084
    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time.It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken.
    Matched MeSH terms: Aluminum Silicates
  8. Mohd Zain N.S., Tajudin S.S., Mohd Noor S.N.F., Mohamad H.
    MyJurnal
    Thisstudy aim tocharacterize melt-derivedbioactive glass and to determinethe bioactive glass (BG) suitability for dental usagethrough proliferative activity assessment of stem cells from human exfoliated deciduous teeth (SHED)when exposed to bioactive glass conditioned medium. Bioglass 45S5 in mole percentages (46.13% SiO2, 26.91% CaO, 24.35% Na2O and 2.60% P2O5)was synthesizedthrough melt-derived and characterized usingX-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR)to confirm and identify its properties.SHEDwere used to evaluate the biocompatibility of 45S5 by exposing the cells to various concentration of BG-conditioned medium (1-10 mg/ml) using alamarBlue assay. The BG produced has an amorphous structureas shown by XRD analysis. TheSi-O-Si bending, asymmetric Si-O stretching and asymmetricSi-O-Si stretchingbands were observed in the BG structure supporting the presenceof silicate network. For alamarBlue assay, SHED cultured in BG-conditioned medium showed high proliferation rate when subjected to minimal powder content in the DMEM cell culture medium.Hence, it can be concluded that SHED cultured in lower powder content of the BG-conditioned media showedhigh proliferative activity suggesting the potential of the BG for dental usage.
    Matched MeSH terms: Silicates
  9. Osman BE, Khalik WMAWM
    Data Brief, 2018 Oct;20:999-1003.
    PMID: 30225314 DOI: 10.1016/j.dib.2018.08.178
    The main goal of this research work is to measure the concentration levels of organochlorine residue in soil. The potential health risk of this pollutant on human was also determined. 10 samples were taken from a lowland paddy field situated in Kelantan, Malaysia. Physical parameters namely soil pH, organic carbon content, water content and particle size were identified to evaluate the quality of soil from the agriculture site. Soxhlet extraction and florisil clean-up process were applied to isolate 10 targeted organochlorine compounds prior to the final determination using a gas chromatography-electron capture detector. Soil from the lowland has characteristics such as slightly acidic, low organic carbon content, high water content and texture dominated by the sandy type. Concentration levels of six detected organochlorine pesticides were calculated in µg/kg. Hazard quotient value in all samples was less than the acceptable risk level HQ ≤ 1, thus reflecting the status of soil in the subjected area as unlikely to pose any adverse health effects.
    Matched MeSH terms: Magnesium Silicates
  10. Ishak S, Lee HS, Singh JK, Ariffin MAM, Lim NHAS, Yang HM
    Materials (Basel), 2019 Oct 17;12(20).
    PMID: 31627479 DOI: 10.3390/ma12203404
    This paper presents the experimental results on the behavior of fly ash geopolymer concrete incorporating bamboo ash on the desired temperature (200 °C to 800 °C). Different amounts of bamboo ash were investigated and fly ash geopolymer concrete was considered as the control sample. The geopolymer was synthesized with sodium hydroxide and sodium silicate solutions. Ultrasonic pulse velocity, weight loss, and residual compressive strength were determined, and all samples were tested with two different cooling approaches i.e., an air-cooling (AC) and water-cooling (WC) regime. Results from these tests show that with the addition of 5% bamboo ash in fly ash, geopolymer exhibited a 5 MPa (53%) and 5.65 MPa (66%) improvement in residual strength, as well as 940 m/s (76%) and 727 m/s (53%) greater ultrasonic pulse velocity in AC and WC, respectively, at 800 °C when compared with control samples. Thus, bamboo ash can be one of the alternatives to geopolymer concrete when it faces exposure to high temperatures.
    Matched MeSH terms: Silicates
  11. Zulfahmi Ali Rahman, Umar Hamzah, Noorulakma Ahmad
    Hydrocarbon is a light-non aqueous phase liquid or known as LNAPL. It poses environmental hazard if accidentally spilled out into the soil and water systems as a result of its insoluble nature in water. LNAPL component infiltrates into soil through pore spaces and afloat at the top of groundwater level. Some of this hydrocarbon would trap and clog within the voids, difficult to remove and costly to clean. The occurence of hydrocarbon in the soil definitely degraded the behaviour of soils in terms of engineering properties. This study aimed to investigate the engineering properties of oil-contaminated soil for two different residual soils originally developed from in-situ weathering of granitic and metasedimentary rocks. The physical characterisations of the soil were determined including particle size distribution, specific gravity test and x-ray diffraction (XRD). The engineering parameters for the contaminated and uncontaminated soils were Atterberg limits, compaction and soil shear strength (UU tests). The amounts of hydrocarbon added to soil were varied at 0%, 4%, 8%, 12% and 16% of dried weigth of soil samples. The results from the particle size distribution analysis showed that residual soil from granitic rock comprises of 38% sand, 33% silt and 4% clay while metasedimentary soil consists of 4% sand, 43% silt dan 29% clay. The mean values of specific gravity for the granitic and metasedimentary soils were 2.56 and 2.61, respectively. The types of minerals present in granitic soil sample were quartz, kaolinite and gibbsite while metasedimentary soil consists of quartz and kaolinite. The Atterberg limits value decreased as a result of increasing amount of added hydrocarbon into the soil. A similar behaviouir was observed with the values of maximum dry density and optimum water content with increasing hydrocarbon content. The overall unconsolidated undrained shear strength, Cu showed a decreasing trend with the increase in hydrocarbon content.
    Matched MeSH terms: Aluminum Silicates
  12. Siti Fatimah Saipuddin, Ahmad Saat
    Science Letters, 2018;12(2):11-18.
    MyJurnal
    Radon gas has been known as one of the main factors that cause breathing complications which lead to lung cancer, second only after smoking habit. As one of the most commonly found Naturally Occurring Radioactive Materials (NORM), its contribution to background radiation is immense, and its contributors, Uranium and Thorium are widely available on Earth and have been in existence for such a long time with long half-lives. Indoor radon exposure contributed by building materials worsens the effects. The probability of inhaling radon-polluted air and being surrounded by it in any buildings is very high. This research is focused on the detection of radon emanation rate from various building materials which are commonly being used in Malaysia. Throughout this research, common building materials used in constructions in Malaysia were collected and indoor radon exposure from each material was measured individually using Tight Chamber Method coupled to a Continuous Radon Monitor, CRM 1029. It has been shown that sand brick is the biggest contributor to indoor radon compared to other samples such as sand, soil, black cement, white cement, and clay brick. From the results, materials which have high radon emanation could be reconsidered as building materials and mitigation action can be chosen, suitable to its application.
    Matched MeSH terms: Aluminum Silicates
  13. Nagendrababu V, Pulikkotil SJ, Veettil SK, Jinatongthai P, Gutmann JL
    J Evid Based Dent Pract, 2019 03;19(1):17-27.
    PMID: 30926099 DOI: 10.1016/j.jebdp.2018.05.002
    OBJECTIVES: Pulpotomy is the favored treatment for pulp exposure in carious primary teeth. This review aimed to compare the success rates of biodentine (BD) and mineral trioxide aggregate (MTA) pulpotomies in primary molars using meta-analysis (MA) and trial sequential analysis (TSA) and also to assess the quality of the results by Grading of Recommendations, Assessment, Development and Evaluation (GRADE).

    METHODS: PubMed, EBSCOhost, and Scopus databases were searched. Additional searching was performed in clinical trial registry, reference lists of systematic reviews, and textbooks. Randomized clinical trials (RCTs) published in the English language through October 2017 comparing the success of pulpotomies in vital primary molars with a follow-up of at least 6 months were selected. Study selection, data extraction, and risk of bias assessment were performed. MA by random effects model, TSA, and GRADE were performed.

    RESULTS: Eight RCTs (n = 474) were included. Two RCTs had low risk of bias. No significant difference was observed between MTA and BD in clinical success at 6 months (risk ratio [RR], 1.00; 95% confidence interval [95% CI], 0.97-1.02; I2 = 0%), 12 months (RR, 1.00; 95% CI, 0.96-1.05; I2 = 0%), and 18 months (RR, 1.00; 95% CI, 0.93-1.08; I2 = 0%). No difference was observed in radiographic success at follow-up of 6 months (RR, 0.99; 95% CI, 0.96-1.02; I2 = 0%), 12 months (RR, 1.02; 95% CI, 0.47-2.21; I2 = 0%), and 18 months (RR, 1.02; 95% CI, 0.91-1.15; I2 = 0%). TSA indicated lack of firm evidence for the results of the meta-analytic outcomes on clinical and radiographic success. GRADE assessed the evidence from the MA comparing the effect of MTA and BD in pulpotomy to be of low quality.

    CONCLUSION: BD and MTA have similar clinical and radiographic success rates based on limited and low-quality evidence. Future high-quality RCTs between MTA and BD is required to confirm the evidence.

    Matched MeSH terms: Silicates
  14. Norinsan Kamil Othman, Solhan Yahya, Denni Asra Awizar
    Sains Malaysiana, 2016;45:1253-1258.
    Anticorrosive properties of nano silicate from paddy husk in salt medium was investigated via weight loss method, Tafel
    polarization and impedance techniques. Prior to the corrosion test, the silica powder was obtained from burning the
    rice husk and extended with a chemical treatment process. The size of silica powder was characterized via zeta sizer and
    showed the amount of micro silica particle appear more than the nano size particle. Nano silica powder was produced
    from the refluxing process of micro silica to enhance the good properties of silica particle. The corrosion inhibition
    efficiency of nano silicate showed good inhibition with increased in inhibitor concentrations. Weight loss test exhibits
    high inhibition as more than 80% even, immersed in the corrosive medium until 14 days. The nano silicate inhibitor
    affected the anodic reaction as showed by Tafel plot analysis. Impedance results also correlated with other test as shown
    by the large size of Nyquist semicircle which represents as high resistance of charge transfer. The surface morphology
    of inhibited specimen showed a smooth surface after nano silicate inhibitor applied in the NaCl medium as observed
    through scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX).
    Matched MeSH terms: Silicates
  15. Yanliang shang, Shouji du, Honghong gao, Tongyin han
    Sains Malaysiana, 2017;46:2241-2250.
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction.
    Matched MeSH terms: Aluminum Silicates
  16. Rodriguez O, Stone W, Schemitsch EH, Zalzal P, Waldman S, Papini M, et al.
    Heliyon, 2017 Oct;3(10):e00420.
    PMID: 29034340 DOI: 10.1016/j.heliyon.2017.e00420
    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn(2+)), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro.
    Matched MeSH terms: Silicates
  17. Abdullah D, Eziana Hussein F, Abd Ghani H
    Iran Endod J, 2017;12(2):257-260.
    PMID: 28512497 DOI: 10.22037/iej.2017.50
    This case report describes the endodontic treatment of an idiopathic perforated internal root resorption. A 24-year-old male Malay patient presented with internal root resorption of two of his anterior teeth. The medical history was non-contributory and he had no history of traumatic injury or orthodontic treatment. Cone-beam computed tomography (CBCT) determined the nature, location and severity of the resorptive lesion. Non-surgical root canal treatment of tooth #22 and combined non-surgical and surgical approach for tooth #11 were carried out using mineral trioxide aggregate (MTA) as the filling material. The clinical and radiographic examination three years after completion of treatment revealed evidences of periapical healing. The appropriate diagnosis and the treatment of internal root resorption allowed good healing of these lesions and maintained the tooth in function for as long as possible.
    Matched MeSH terms: Silicates
  18. Smran A, Abdullah M, Ahmad NA, Ben Yahia F, Fouda AM, Alturaiki SA, et al.
    PLoS One, 2024;19(3):e0299552.
    PMID: 38483853 DOI: 10.1371/journal.pone.0299552
    This research aimed to assess the stress distribution in lower premolars that were obturated with BioRoot RCS or AH Plus, with or without gutta percha (GP), and subjected to vertical and oblique forces. One 3D geometric model of a mandibular second premolar was created using SolidWorks software. Eight different scenarios representing different root canal filling techniques, single cone technique with GP and bulk technique with sealer only with occlusal load directions were simulated as follows: Model 1 (BioRoot RCS sealer and GP under vertical load [VL]), Model 2 (BioRoot RCS sealer and GP under oblique load [OL]), Model 3 (AH Plus sealer with GP under VL), Model 4 (AH Plus sealer with GP under OL), Model 5 (BioRoot RCS sealer in bulk under VL), Model 6 (BioRoot RCS in bulk under OL), Model 7 (AH Plus sealer in bulk under VL), and Model 8 (AH Plus sealer in bulk under OL). A static load of 200 N was applied at three occlusal contact points, with a 45° angle from lingual to buccal. The von Mises stresses in root dentin were higher in cases where AH Plus was used compared to BioRoot RCS. Furthermore, shifting the load to an oblique direction resulted in increased stress levels. Replacing GP with sealer material had no effect on the dentin maximum von Mises stress in BioRoot RCS cases. Presence of a core material resulted in lower stress in dentin for AH Plus cases, however, it did not affect the stress levels in dentin for cases filled with BioRoot RCS. Stress distribution in the dentin under oblique direction was higher regardless of sealer or technique used.
    Matched MeSH terms: Silicates
  19. Storey M, Roberts RG, Saidin M
    Proc Natl Acad Sci U S A, 2012 Nov 13;109(46):18684-8.
    PMID: 23112159 DOI: 10.1073/pnas.1208178109
    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated (40)Ar/(39)Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our (40)Ar/(39)Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard-Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our (40)Ar/(39)Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of (14)C dating.
    Matched MeSH terms: Silicates
  20. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Anbu P, Lakshmipriya T
    Sci Rep, 2020 Feb 25;10(1):3351.
    PMID: 32099019 DOI: 10.1038/s41598-020-60208-x
    An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).
    Matched MeSH terms: Aluminum Silicates/pharmacology*; Aluminum Silicates/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links