Displaying publications 41 - 60 of 365 in total

Abstract:
Sort:
  1. Tyagita, H., Bahaman, A.R., Jasni, S., Ibrahim, T.A.T., Fuzina, N.H.
    Jurnal Veterinar Malaysia, 2019;31(1):1-11.
    MyJurnal
    A tourist was infected with a new strain of leptospires namely, Leptospira icterohemorrhagiae serovar Lai strain Langkawi, when he was on vacation in Langkawi, Malaysia. The leptospiral strain was successfully isolated from the patient in the Netherland. In this study, the bacteria were retrieved from Holland and inoculated into fifteen guinea pigs in Universiti Putra Malaysia (UPM) to determine its pathogenicity. The main clinical symptoms in the guinea pigs were decreased appetite and jaundice. Blood profile showed high neutrophil, lymphocyte, PCV, RBC, haemoglobin, leukocyte and thrombocyte counts. Besides that, enhancement of electrolytes such as sodium (Na), chloride (Cl), and potassium (K) was also noted. Biochemical examination showed an increase alkaline phosphatase (ALP), aspartate transaminase (AST) and bilirubin levels. Albumin, alanine transaminase (ALT), blood urea, total protein and creatinine were low values. Histopathological examination under haematoxylin and eosin staining showed evidence of haemorrhages, congestion and oedema in all organs, with inflammatory cell infiltration characterized by neutrophils, lymphocytes and macrophages. Hydropic degeneration and cell necrosis were also common in the findings. Leptospires were detected from Day 2 p.i by silver staining and transmission electron microscopy (TEM). Rise in antibody titre was seen as early as Day 5 p.i and leptospiral DNA was detected by PCR in the kidneys and liver on Day 3 and Day 5, respectively. The findings were indicative of leptospirosis. This study demonstrated that guinea pigs are a suitable animal model to illustrate the clinical symptoms and pathological changes seen following infection with Leptospira icterohaemorrhagiae serovar Lai strain Langkawi. In general, the symptoms and changes seen in leptospirosis are similar to viral infections and the information and data from this present study would help differentiate infection due to leptospires from that of viral infection. Leptospiral infection has often been misdiagnosed to be viral infection such as influenza and dengue which have similar signs and symptoms as leptospirosis.
    Matched MeSH terms: Silver Staining
  2. Tong WL, Ong WJ, Chai SP, Tan MK, Hung YM
    Sci Rep, 2015;5:11896.
    PMID: 26100977 DOI: 10.1038/srep11896
    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.
    Matched MeSH terms: Silver Compounds
  3. Tevan, R., Govindaraju, Mugilan, Jayakumar, Saravanan, Govindan, Natanamurugaraj, Mohd Hasbi Ab. Rahim, Maniam, Gaanty Pragas, et al.
    MyJurnal
    A biological method was employed to synthesize silver nanoparticles through marine diatom Amphora sp. Antimicrobial efficacy test against different pathogenic bacteria were performed through synthesized silver nanoparticles. The physio-chemical properties of synthesized silver nanoparticles were studied using analytical techniques such as UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM), EnergyDispersive X-ray Spectroscopy (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Powder Diffraction (XRD). UV-Vis color intensity study and higher magnification of the Field Emission Scanning Electron Microscopy image showed the synthesized silver nanoparticles were rod shaped with a size range from 42 nm to 46 nm. The synthesized nanoparticles exhibited antibacterial activities in varying magnitudes. About 10 mg/ml of silver nanoparticles were able to inhibit the growth of gram-negative bacteria while gram-positive bacteria were resistant towards similar concentrations of silver nanoparticles.
    Matched MeSH terms: Silver
  4. Tan Sian Hui Abdullah HS, Aqlili Riana Mohd Asseri SN, Khursyiah Wan Mohamad WN, Kan SY, Azmi AA, Yong Julius FS, et al.
    Environ Pollut, 2021 Feb 15;271:116295.
    PMID: 33383429 DOI: 10.1016/j.envpol.2020.116295
    This manuscript describes the reuse of biowaste for the biosynthesis of silver nanoparticles (AgNPs) and their applications. In particular, we hypothesized that the phytochemicals in the onion peels could act as reductant for silver nanoparticles syntheses. AgNO3 solution (1 mmol) was added dropwise to an aqueous solution of onion peel extract in 3:7 ratio. The reaction mixture was subjected to heating at 90 °C for about 30 min. During the synthesis of the AgNPs, the change of the colour of solution was observed. The AgNPs solution was centrifuged to obtain the two layers, which consists of clear solution and solid layers at 12000 rpm for 30 min. The precipitate was filtered and was re-dispersed in deionised water (25 mL). The solution was centrifuged again to obtain the purified AgNPs. Subsequently, this solution was freeze dried for 48 h to afford the powdered AgNPs. In this work, the structure of the AgNPs were synthesized in spherical shape, with an average size of 12.5 nm observed in the Transmission electron microscopy (TEM) analysis. For catalytic application, the synthesized AgNPs could be applied as green catalyst to promote Knoevenagel and Hantzsch reactions. In most cases, the desired products were obtained in satisfactory yields. In addition, the AgNPs were found to be recyclable for the subsequent reactions. After five successive runs, the average isolated yields for both transformations were recorded to be 91% (Knoevenagel condensation) and 94% (Hantzsch reaction), which indicated that the existing AgNPs could apply as green catalyst in the field of organic synthesis. Furthermore, the AgNPs also showed satisfactory result in antioxidant activity. The current results indicate that the AgNPs can act as alternative antioxidant agent and green catalyst in mediating organic transformations.
    Matched MeSH terms: Silver*
  5. Tan ST, Ali Umar A, Balouch A, Nafisah S, Yahaya M, Yap CC, et al.
    ACS Comb Sci, 2014 Jul 14;16(7):314-20.
    PMID: 24919039 DOI: 10.1021/co400157m
    This Research Article reports an unusually high efficiency heterogeneous photodegradation of methyl orange (MO) in the presence of Ag nanoparticle-loaded ZnO quasi-nanotube or nanoreactor (A-ZNRs) nanocatalyst grown on FTO substrate. In typical process, photodegradation efficiency of as high as 21.6% per μg per Watts of used catalyst and UV power can be normally obtained within only a 60-min reaction time from this system, which is 10(3) order higher than the reported results. This is equivalent to the turnover frequency of 360 mol mol(-1) h(-1). High-density hexagonal A-ZNRs catalysts were grown directly on FTO substrate via a seed-mediated microwave-assisted hydrolysis growth process utilizing Ag nanoparticle of approximately 3 nm in size as nanoseed and mixture aqueous solution of Zn(NO3)·6H2O, hexamethylenetetramine (HMT), and AgNO3 as the growth solution. A-ZNRs adopts hexagonal cross-section morphology with the inner surface of the reactor characterized by a rough and rugged structure. Transmission electron microscopy imaging shows the Ag nanoparticle grows interstitially in the ZnO nanoreactor structure. The high photocatalytic property of the A-ZNRs is associated with the highly active of inner side's surface of A-ZNRs and the oxidizing effect of Ag nanoparticle. The growth mechanism as well as the mechanism of the enhanced-photocatalytic performance of the A-ZNRs will be discussed.
    Matched MeSH terms: Silver/chemistry*
  6. Talari MK, Abdul Majeed AB, Tripathi DK, Tripathy M
    Chem Pharm Bull (Tokyo), 2012;60(7):818-24.
    PMID: 22790812
    The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
    Matched MeSH terms: Silver/chemistry*
  7. Tajdidzadeh M, Azmi BZ, Yunus WM, Talib ZA, Sadrolhosseini AR, Karimzadeh K, et al.
    ScientificWorldJournal, 2014;2014:324921.
    PMID: 25295298 DOI: 10.1155/2014/324921
    The particle size, morphology, and stability of Ag-NPs were investigated in the present study. A Q-Switched Nd: YAG pulsed laser (λ = 532 nm, 360 mJ/pulse) was used for ablation of a pure Ag plate for 30 min to prepare Ag-NPs in the organic compound such as ethylene glycol (EG) and biopolymer such as chitosan. The media (EG, chitosan) permitted the making of NPs with well dispersed and average size of Ag-NPs in EG is about 22 nm and in chitosan is about 10 nm in spherical form. Particle size, morphology, and stability of NPs were compared with distilled water as a reference. The stability of the samples was studied by measuring UV-visible absorption spectra of samples after one month. The result indicated that the formation efficiency of NPs in chitosan was higher than other media and NPs in chitosan solution were more stable than other media during one month storage. This method for synthesis of silver NPs could be as a green method due to its environmentally friendly nature.
    Matched MeSH terms: Silver/chemistry*
  8. Syahir A, Kajikawa K, Mihara H
    Protein Pept Lett, 2018;25(1):34-41.
    PMID: 29237369 DOI: 10.2174/0929866525666171214111957
    BACKGROUND: Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio.

    OBJECTIVES: This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality.

    METHODS: In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes.

    RESULTS: As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method.

    CONCLUSION: We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions.

    Matched MeSH terms: Silver Compounds/chemistry
  9. Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA
    J Environ Manage, 2018 Jul 15;218:59-70.
    PMID: 29665487 DOI: 10.1016/j.jenvman.2018.03.066
    It is the first time to do investigation the reliability and validity of thirty kinetic and isotherm models for describing the behaviors of adsorption of silver nanoparticles (AgNPs) onto different adsorbents. The purpose of this study is therefore to assess the most reliable models for the adsorption of AgNPs onto feasibility of an adsorbent. The fifteen kinetic models and fifteen isotherm models were used to test secondary data of AgNPs adsorption collected from the various data sources. The rankings of arithmetic mean were estimated based on the six statistical analysis methods of using a dedicated software of the MATLAB Optimization Toolbox with a least square curve fitting function. The use of fractal-like mixed 1, 2-order model for describing the adsorption kinetics and that of Fritz-Schlunder and Baudu models for describing the adsorption isotherms can be recommended as the most reliable models for AgNPs adsorption onto the natural and synthetic adsorbent materials. The application of thirty models have been identified for the adsorption of AgNPs to clarify the usefulness of both groups of the kinetic and isotherm equations in the rank order of the levels of accuracy, and this significantly contributes to understandability and usability of the proper models and makes to knowledge beyond the existing literatures.
    Matched MeSH terms: Silver*
  10. Syafiuddin A, Salmiati S, Hadibarata T, Kueh ABH, Salim MR, Zaini MAA
    Sci Rep, 2018 01 17;8(1):986.
    PMID: 29343711 DOI: 10.1038/s41598-018-19375-1
    The current status of silver nanoparticles (AgNPs) in the water environment in Malaysia was examined and reported. For inspection, two rivers and two sewage treatment plants (STPs) were selected. Two activated carbons derived from oil palm (ACfOPS) and coconut (ACfCS) shells were proposed as the adsorbent to remove AgNPs. It was found that the concentrations of AgNPs in the rivers and STPs are in the ranges of 0.13 to 10.16 mg L-1 and 0.13 to 20.02 mg L-1, respectively, with the highest concentration measured in July. ACfOPS and ACfCS removed up to 99.6 and 99.9% of AgNPs, respectively, from the water. The interaction mechanism between AgNPs and the activated carbon surface employed in this work was mainly the electrostatic force interaction via binding Ag+ with O- presented in the activated carbon to form AgO. Fifteen kinetic models were compared statistically to describe the removal of AgNPs. It was found that the experimental adsorption data can be best described using the mixed 1,2-order model. Therefore, this model has the potential to be a candidate for a general model to describe AgNPs adsorption using numerous materials, its validation of which has been confirmed with other material data from previous works.
    Matched MeSH terms: Silver
  11. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
    Matched MeSH terms: Silver/toxicity*
  12. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR
    PMID: 26186612 DOI: 10.1016/j.saa.2015.07.009
    Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml.
    Matched MeSH terms: Silver
  13. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Silver/chemistry*
  14. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Silver/administration & dosage*; Silver/pharmacokinetics; Silver/chemistry
  15. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
    Matched MeSH terms: Silver/pharmacology*
  16. Steffi W, Zaliana B, Amreen A, Nasirudin N
    Med J Malaysia, 2017 10;72(5):316-317.
    PMID: 29197891 MyJurnal
    Chronic exudative malodorous fungating wound of four years at the right arm due to diffuse large B cell lymphoma managed with silver dressings. In two months of application with nanocrystalline silver coated dressings, there was significant improvement in wound.
    Matched MeSH terms: Silver Compounds/therapeutic use*
  17. Sotoodehnia P, Mazlan N, Mohd Saud H, Samsuri WA, Habib SH, Soltangheisi A
    PeerJ, 2019;7:e6418.
    PMID: 30918747 DOI: 10.7717/peerj.6418
    Background: Plant growth-promoting rhizobacteria (PGPR) are highly promising biofertilizers that contribute to eco-friendly sustainable agriculture. There have been many reports on the anti-microbial properties of nanoparticles (NPs). Toxic effects of NPs under laboratory conditions have also reported; however, there is a lack of information about their uptake and mobility in organisms under environmental conditions. There is an urgent need to determine the highest concentration of NPs which is not detrimental for growth and proliferation of PGPR.

    Methods: Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to measure the size and shape of NPs. Minimum inhibitory concentrations (MIC) of nano-silver on selected beneficial microbes and Ralstonia solanacearum were measured using the microdilution broth method. The percentage of seed germination was measured under in vitro conditions.

    Results: NPs were spherical with a size of 16 ± 6 nm. Nano-silver at 12-40 mg l-1 inhibited the growth of bacteria. Seed application at 40 mg l-1 protected seeds from R. solanacearum and improved the rate of seed germination.

    Matched MeSH terms: Silver
  18. Sivaranjana P, Nagarajan ER, Rajini N, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Jun;99:223-232.
    PMID: 28237574 DOI: 10.1016/j.ijbiomac.2017.02.070
    Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials.
    Matched MeSH terms: Silver/chemistry*
  19. Siti Zulaikha Ghozali, Mohd Nazri Ismail, Nor Hazwani Ahmad
    MyJurnal
    The biosynthesis of nanoparticles has been proposed as a cost-effective and environmental friendly alternative to chemical and physical methods. The present study was aimed to characterise Catharanthus roseus (C. roseus)-silver nanoparticles (AgNPs) using a standardised C. roseus aqueous extract. Methods: The standardisation was performed by using Liquid Chromatography/Time-of-Flight ion trap Mass Spectrometry. An optimised C. roseus-AgNPs have been previously synthesised. Further characterisation of C. roseus-AgNPs was evaluated by zeta potential analysis and fourier transform infrared spectroscopy (FTIR). Results: The chromatography analysis has revealed presence of thirteen possible indole alkaloids in C. roseus extract which were lochrovicine, lochnerine, vinleurosine, vindolinine, tabersonine, catharanthine, serpentine, catharosine, vincristine, catharine, ajmalicine, vinleurosine, and vindolicine. Zeta potential analysis exhibited the value at -16.6 mV. FTIR spectrum of C. roseus aqueous extract showed the absorption band at 3210.83 cm-1 (C-H stretch), 2934.11 (C-H bond), 1578.15 (N=O stretch), 1388.76 and 1314.89 (N=O bend), 1119.29 (C-O bond) and 729.94 (C-Cl bond). In comparison, FTIR spectrum of C. roseus-AgNP s showed the absorption band at 2925.01 and 2924.97 (C-H bond), 1622.93 (C-C=C symmetric stretch), 1383.19 and 1384.13 (N-O bend), 1037.92/1038.76/1238.3/1117.2 (C-O bond), 3169.4 (O-H bond), 774.59 and 691.53 (C-Cl bond). Conclusion: The present findings have shown that the C. roseus aqueous extract contains alkaloids that may responsible as reducing and stabilising agents in the synthesis of AgNPs.
    Matched MeSH terms: Silver
  20. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, Khan NA
    Parasitol Res, 2020 Jul;119(7):2351-2358.
    PMID: 32451717 DOI: 10.1007/s00436-020-06711-6
    Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.
    Matched MeSH terms: Silver/metabolism; Silver/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links