Displaying publications 41 - 60 of 256 in total

Abstract:
Sort:
  1. Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK
    Environ Geochem Health, 2021 Feb;43(2):649-662.
    PMID: 31679080 DOI: 10.1007/s10653-019-00446-9
    One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  2. Talari MK, Abdul Majeed AB, Tripathi DK, Tripathy M
    Chem Pharm Bull (Tokyo), 2012;60(7):818-24.
    PMID: 22790812
    The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  3. Tan CS, Aqiludeen NA, Tan R, Gowbei A, Mijen AB, Santhana Raj L, et al.
    Med J Malaysia, 2020 03;75(2):110-116.
    PMID: 32281590
    INTRODUCTIONS: The emergence of multidrug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) complicates the treatment of the simplest infection. Although glycopeptides such as vancomycin still proves to be effective in treating MRSA infections, the emergence of vancomycin-resistant strains limits the long term use of this antibiotic. Bacteriophages are ubiquitous bacterial viruses which is capable of infecting and killing bacteria including its antibiotic-resistant strains. Bactericidal bacteriophages use mechanisms that is distinct from antibiotics and is not affected by the antibioticresistant phenotypes.

    OBJECTIVES: The study was undertaken to evaluate the possibility to isolate bacteriolytic bacteriophages against S.aureus from raw sewage water and examine their efficacy as antimicrobial agents in vitro.

    METHODS: Bacteriophages were isolated from the raw sewage using the agar overlay method. Isolated bacteriophages were plaque purified to obtain homogenous bacteriophage isolates. The host range of the bacteriophages was determined using the spot test assay against the 25 MRSA and 36 MSSA isolates obtained from the Sarawak General Hospital. Staphylococcus saprophyticus, Staphylococcus sciuri and Staphylococcus xylosus were included as non-SA controls. The identity of the bacteriophages was identified via Transmission Electron Microscopy and genomic size analysis. Their stability at different pH and temperature were elucidated.

    RESULTS: A total of 10 lytic bacteriophages infecting S.aureus were isolated and two of them namely ΦNUSA-1 and ΦNUSA-10 from the family of Myoviridae and Siphoviridae respectively exhibited exceptionally broad host range against >80% of MRSA and MSSA tested. Both bacteriophages were specific to S.aureus and stable at both physiologic pH and temperature.

    CONCLUSION: This study demonstrated the abundance of S.aureus specific bacteriophages in raw sewage. Their high virulence against both MSSA and MRSA is an excellent antimicrobial characteristic which can be exploited for bacteriophage therapy against MRSA.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  4. Norazah A, Koh YT, Ghani Kamel A, Alias R, Lim VK
    Int J Antimicrob Agents, 2001 May;17(5):411-4.
    PMID: 11337230
    Four hundred methicillin-resistant Staphylococcus aureus strains (MRSA) from different geographical areas in Malaysia were tested for mupirocin susceptibility using minimum inhibitory concentration (MIC) determination. The majority of these strains (98.75%) were susceptible to mupirocin with MICs of < or = 4 mg/l. Fifty-percent of these strains had MICs of 0.125 mg/l or less while 90% of the strains had MICs of 1 mg/l or less. Mupirocin resistance was detected in five strains (1.25%) and one of these (0.25%) had an MIC of 64 mg/l and the other four strains (1%), high-level resistance with MICs > 512 mg/l. Even though the rate of mupirocin resistance in MRSA is still low in Malaysia, its presence calls for a strict policy on mupirocin usage in Malaysian hospitals.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  5. Rohani MY, Raudzah A, Lau MG, Zaidatul AA, Salbiah MN, Keah KC, et al.
    Int J Antimicrob Agents, 2000 Jan;13(3):209-13.
    PMID: 10724026
    Isolates of 390 Staphylococcus aureus were tested against 13 different antibiotics by a disc diffusion method as recommended by the National Committee for Clinical Laboratory Standards (NCCLS). Strains were isolated from blood (5.7%), cerebrospinal fluid (0.5%), respiratory tract (11.8%), pus and wound (73.3%), urine (1.8%), genital specimens (1.0%) and other specimens (4.3%). Only 4.6% of the isolates were fully susceptible to all the drugs tested. Resistance to penicillin was 94.1%, methicillin, 39.7%, chloramphenicol, 8.5%, ciprofloxacin, 29.2%, clindamycin, 2.1%, erythromycin, 45.9% gentamicin, 40.5%; rifampicin, 3.3% tetracycline, 47.2%, co-trimoxazole, 38.5%, mupirocin, 2.8%, fusidic acid, 3.6%. None of the isolates was resistant to vancomycin. The susceptibility of methicillin-resistant strains to erythromycin, gentamicin, tetracycline and ciprofloxacin was low, while clindamycin, fusidic acid, mupirocin, and rifampicin remained active.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  6. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p 
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  7. Kirubakari B, Chen Y, Sasidharan S
    PMID: 31113347 DOI: 10.2174/1871523018666190522112902
    BACKGROUND: Polyalthia longifolia is a popular medicinal plant and has been widely used as a traditional remedy for centuries in curing of various ailments. The purpose of this study was conducted to determine the in situ antimicrobial synergistic effects between Polyalthia longifolia leaf ethyl acetate fraction (PLEAF) and ampicillin against MRSA local isolate by using modern microscopy technique.

    METHODS: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).

    RESULTS: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.

    CONCLUSION: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  8. Nor Shamsudin M, Sekawi Z, van Belkum A, Neela V
    J Med Microbiol, 2008 Sep;57(Pt 9):1180-1181.
    PMID: 18719195 DOI: 10.1099/jmm.0.47844-0
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  9. Ahmad N, Nawi S, Rajasekaran G, Maning N, Aziz MN, Husin A, et al.
    J Med Microbiol, 2010 Dec;59(Pt 12):1530-1532.
    PMID: 20724515 DOI: 10.1099/jmm.0.022079-0
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  10. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 May;30(3):891-895.
    PMID: 28653935
    This study evaluated the impact of pH (7.4 and 6.5), bovine serum albumin (BSA), and human serum albumin (HSA) on Curcumin activity against 2 reference, 1 clinical, and 10 environmental strains of Staphylococcus aureus (S. aureus). Minimal inhibitory concentrations (MICs) of Curcumin against S. aureus were statistically indifferent (p>0.05) at pH7.4 and pH6.5. Activity of Curcumin against S. aureus was reduced by two folds in the presence of 1.25-5% BSA/HSA.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  11. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
    Matched MeSH terms: Staphylococcus aureus/drug effects
  12. Saleem S, Iqbal A, Hasnain S
    Trop Biomed, 2020 Jun 01;37(2):482-488.
    PMID: 33612817
    Bacterial mediated Silver nanoparticles is considered as an emerging Ecofriendly approach to eradicate human pathogens. This paper aims to provide the biological approach for the synthesis of silver nanoparticles from indigenously isolated bacteria. This study will be beneficial to control the nosocomial infections triggered by MRSA (Methicillin-resistant Staphylococcus aureus). The current study is the extracellular synthesis of silver nanoparticles by using the cell free filtrate of bacterial strains isolated from the soil. The optimization study was also carried out to obtain the maximum production of silver nanoparticles. Nanoparticles were confirmed and characterized by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM) having the plasmon resonance peak between 420-450nm with 10-60nm in size range and most were spherical in shape. Synthesized silver nanoparticles showed a potential antibacterial activity against MRSA (Methicillin Resistant Staphylococcus aureus) in-vitro study. This is the green approach for the production of AgNPs, as there was no previous work done on the synthesis of silver nanoparticles by bacteria in this region of Southern Punjab, Pakistan and these nanoparticles can be used to treat nosocomial infection. These silver nanoparticles can be used in effective disease management as antimicrobial agent.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  13. Gunasekharan M, Choi TI, Rukayadi Y, Mohammad Latif MA, Karunakaran T, Mohd Faudzi SM, et al.
    Molecules, 2021 Sep 01;26(17).
    PMID: 34500755 DOI: 10.3390/molecules26175314
    Bacterial infections are regarded as one of the leading causes of fatal morbidity and death in patients infected with diseases. The ability of microorganisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), to develop resistance to current drugs has evoked the need for a continuous search for new drugs with better efficacies. Hence, a series of non-PAINS associated pyrrolylated-chalcones (1-15) were synthesized and evaluated for their potency against MRSA. The hydroxyl-containing compounds (8, 9, and 10) showed the most significant anti-MRSA efficiency, with the MIC and MBC values ranging from 0.08 to 0.70 mg/mL and 0.16 to 1.88 mg/mL, respectively. The time-kill curve and SEM analyses exhibited bacterial cell death within four hours after exposure to 9, suggesting its bactericidal properties. Furthermore, the docking simulation between 9 and penicillin-binding protein 2a (PBP2a, PDB ID: 6Q9N) suggests a relatively similar bonding interaction to the standard drug with a binding affinity score of -7.0 kcal/mol. Moreover, the zebrafish model showed no toxic effects in the normal embryonic development, blood vessel formation, and apoptosis when exposed to up to 40 µM of compound 9. The overall results suggest that the pyrrolylated-chalcones may be considered as a potential inhibitor in the design of new anti-MRSA agents.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  14. Azmi NN, Mahyudin NA, Wan Omar WH, Mahmud Ab Rashid NK, Ishak CF, Abdullah AH, et al.
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011396 DOI: 10.3390/molecules27010170
    Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  15. Chung PY, Khoo REY, Liew HS, Low ML
    Ann Clin Microbiol Antimicrob, 2021 Sep 24;20(1):67.
    PMID: 34560892 DOI: 10.1186/s12941-021-00473-4
    BACKGROUND: Methicillin-resistance S. aureus (MRSA) possesses the ability to resist multiple antibiotics and form biofilm. Currently, vancomycin remains the last drug of choice for treatment of MRSA infection. The emergence of vancomycin-resistant S. aureus (VRSA) has necessitated the development of new therapeutic agents against MRSA. In this study, the antimicrobial and antibiofilm activities of two copper-complexes derived from Schiff base (SBDs) were tested individually, and in combination with oxacillin (OXA) and vancomycin (VAN) against reference strains methicillin-susceptible and methicillin-resistant Staphylococcus aureus. The toxicity of the SBDs was also evaluated on a non-cancerous mammalian cell line.

    METHODS: The antimicrobial activity was tested against the planktonic S. aureus cells using the microdilution broth assay, while the antibiofilm activity were evaluated using the crystal violet and resazurin assays. The cytotoxicity of the SBDs was assessed on MRC5 (normal lung tissue), using the MTT assay.

    RESULTS: The individual SBDs showed significant reduction of biomass and metabolic activity in both S. aureus strains. Combinations of the SBDs with OXA and VAN were mainly additive against the planktonic cells and cells in the biofilm. Both the compounds showed moderate toxicity against the MRC5 cell line. The selectivity index suggested that the compounds were more cytotoxic to S. aureus than the normal cells.

    CONCLUSION: Both the SBD compounds demonstrated promising antimicrobial and antibiofilm activities and have the potential to be further developed as an antimicrobial agent against infections caused by MRSA.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  16. Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY
    Planta Med, 2008 Dec;74(15):1802-5.
    PMID: 18991205 DOI: 10.1055/s-0028-1088340
    The methanolic extract of the leaves of CASSIA ALATA was sequentially partitioned in increasing polarity to afford the hexane, chloroform, butanol and residual extract. Crude extracts were evaluated against MRSA using the agar well diffusion assay. The butanol and chloroform extracts both exhibited inhibition against MRSA with inhibition indexes of 1.03 +/- 0.16 and 0.78 +/- 0.07 at the concentration of 50 mg/mL. The butanol extracts were further purified using silica gel and reverse phase chromatography to afford kaempferol ( 1), kaempferol 3- O-beta-glucopyranoside ( 2), kaempferol 3- O-gentiobioside ( 3) and aloe emodin ( 4). The four constituents showed varying degrees of inhibition against MRSA. Both 1 and 4 exhibited MIC (50) values of 13.0 +/- 1.5 microg/mL and 12.0 +/- 1.5 microg/mL, respectively. The kaempferol glycosides 2 and 3 were less active with MIC (50) values of 83.0 +/- 0.9 microg/mL and 560.0 +/- 1.2 microg/mL, respectively. A free hydroxyl group at C-3 of the flavonol structure is a structural requirement for the inhibition of MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  17. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  18. Tan KW, Tay L, Lim SH
    Singapore Med J, 1994 Jun;35(3):277-82.
    PMID: 7997904
    Methicillin resistant Staphylococcus aureus (MRSA) is a major infection control problem in many countries. There have been many reports of outbreaks in neonatal nurseries including, in our part of the world, Australia, Hong Kong and Malaysia. A recent outbreak of MRSA in the neonatal intensive care unit in the Kandang Kerbau Hospital, Singapore, presented us with the opportunity to study the clinical characteristics of the outbreak and the effects of infection control measures. Neonates admitted to the neonatal intensive care unit were studied over a 20-month period. They were all screened for nasal colonisation on admission and weekly thereafter. Infections were documented. Over this period there were altogether 2,576 admissions of which 85 infants had nasal colonisation with MRSA (3.3%) and 28 developed infections (1%). Although the majority of infants colonised by MRSA suffered no ill effects, 3 had septicaemia and 2 had septicaemia with osteomyelitis. There were no deaths. Standard infection control measures with barrier nursing and the use of mupirocin nasal ointment were ineffective, and control was achieved only after strict cohorting together with the use of mupirocin was instituted. This was done without additional costs to the department and without additional nurses or doctors.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  19. Puthucheary SD, Lim CT, Parasakthi N, Tan A, Lam KL
    Singapore Med J, 1987 Oct;28(5):456-8.
    PMID: 3433116
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  20. Lim VKE, Zulkifli HI
    Singapore Med J, 1987 Apr;28(2):176-9.
    PMID: 3629274
    Methicillin resistant Siaphylococcus aureus Is a common isolate from clinical specimens obtained from babies at the special care nursery of the Kuala Lumpur Maternity Hospital. Major Infections due to this organism were, however uncommon and the organism had in the majority of cases been present as a coloniser or as a cause of superficial infection. Netilmicin is a valuable antibiotic in the treatment of the severe infections.
    Matched MeSH terms: Staphylococcus aureus/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links