Displaying publications 41 - 60 of 322 in total

Abstract:
Sort:
  1. Shang L, Xu Y, Leaw CP, Lim PT, Wang J, Chen J, et al.
    Sci Total Environ, 2021 Aug 01;780:146484.
    PMID: 33774286 DOI: 10.1016/j.scitotenv.2021.146484
    The dinoflagellate genus Alexandrium has been well known for causing paralytic shellfish poisoning (PSP) worldwide. Several non-PSP toxin-producing species, however, have shown to exhibit fish-killing toxicity. Here, we report the allelopathic activity of Alexandrium leei from Malaysia to other algal species, and its toxicity to finfish and zooplankton, via laboratory bioassays. Thirteen microalgal species that co-cultured with Al. leei revealed large variability in the allelopathic effects of Al. leei on the test algae, with the growth inhibition rates ranging from 0 to 100%. The negative allelopathic effects of Al. leei on microalgae included loss of flagella and thus the motility, damages of chain structure, deformation in cell morphology, and eventually cell lysis. The finfish experienced 100% mortality within 24 h exposed to the live culture (2000-6710 cells·mL-1), while the rotifer and brine shrimp exhibited 96-100% and 90-100% mortalities within 48 h when exposed to 500-6000 cells·mL-1 of Al. leei. The mortality of the test animals depended on the Al. leei cell density exposed, leading to a linear relationship between mortality and cell density for the finfish, and a logarithmic relationship for the two zooplankters. When exposed to the treatments using Al. leei whole live culture, cell-free culture medium, extract of algal cells in the f/2-Si medium, extract of methanol, and the re-suspended freeze-and-thaw algal cells, the test organisms (Ak. sanguinea and rotifers) all died at the cell density of 8100 cells·mL-1 within 24 h. Toxin analyses by HILIC-ESI-TOF/MS and LC-ESI-MS/MS demonstrated that Al. leei did not produce PSP-toxins and 13-desmethyl spirolide C. Overall, our findings demonstrated potent allelopathy and toxicity of Al. leei, which do not only pose threats to the aquaculture industry, fisheries, and marine ecosystems but may also play a part role in the population dynamics and bloom formation of this species.
    Matched MeSH terms: Tandem Mass Spectrometry
  2. Amir SH, Yuswan MH, Aizat WM, Mansor MK, Desa MNM, Yusof YA, et al.
    J Proteomics, 2021 06 15;241:104240.
    PMID: 33894373 DOI: 10.1016/j.jprot.2021.104240
    Mass spectrometry-based proteomics relies on dedicated software for peptide and protein identification. These software include open-source or commercial-based search engines; wherein, they employ different algorithms to establish their scoring and identified proteins. Although previous comparative studies have differentiated the proteomics results from different software, there are still yet studies specifically been conducted to compare and evaluate the search engine in the field of halal analysis. This is important because the halal analysis is often using commercial meat samples that have been subjected to various processing, further complicating its analysis. Thus, this study aimed to assess three open-source search engines (Comet, X! Tandem, and ProteinProspector) and a commercial-based search engine (ProteinPilot™) against 135 raw tandem mass spectrometry data files from 15 types of pork-based food products for halal analysis. Each database search engine contained high false-discovery rate (FDR); however, a post-searching algorithm called PeptideProphet managed to reduce the FDR, except for ProteinProspector and ProteinPilot™. From this study, the combined database search engine (executed by iProphet) reveals a thorough protein list for pork-based food products; wherein the most abundant proteins are myofibrillar proteins. Thus, this proteomics study will aid the identification of potential peptide and protein biomarkers for future precision halal analysis. SIGNIFICANCE: A critical challenge of halal proteomics is the availability of a database to confirm the inferential peptides as well as proteins. Currently, the established database such as UniProtKB is related to animal proteome; however, the halal proteomics is related to the highly processed meat-based food products. This study highlights the use of different database search engines (Comet, X! Tandem, ProteinProspector, and ProteinPilot™) and their respective algorithms to analyse 135 raw tandem mass spectrometry data files from 15 types of pork-based food products. This is the first attempt that has compared different database search engines in the context of halal proteomics to ensure the effectiveness of controlling the FDR. Previous studies were just focused on the advantages of a certain algorithm over another. Moreover, other previous studies also have mainly reported the use of mass spectrometry-based shotgun proteomics for meat authentication (the most similar field to halal analysis), but none of the studies were reported on halal aspects that used samples originated from highly processed food products. Hence, a systematic comparative study is duly needed for a more comprehensive and thorough proteomics analysis for such samples. In this study, our combinatorial approach for halal proteomics results from the different search engines used (Comet, X! Tandem, and ProteinProspector) has successfully generated a comprehensive spectral library for the pork-based meat products. This combined spectral library is freely available at https://data.mendeley.com/datasets/6dmm8659rm/3. Thus far, this is the first and new attempt at establishing a spectral library for halal proteomics. We also believe this study is a pioneer for halal proteomics that aimed at non-conventional and non-model organism proteomics, protein analytics, protein bioinformatics, and potential biomarker discovery.
    Matched MeSH terms: Tandem Mass Spectrometry
  3. Azmi N, Othman N
    Membranes (Basel), 2021 May 21;11(6).
    PMID: 34063994 DOI: 10.3390/membranes11060376
    Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein-protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.
    Matched MeSH terms: Tandem Mass Spectrometry
  4. Arapidi G, Osetrova M, Ivanova O, Butenko I, Saveleva T, Pavlovich P, et al.
    Data Brief, 2018 Jun;18:1204-1211.
    PMID: 29900295 DOI: 10.1016/j.dib.2018.04.018
    Blood as connective tissue potentially contains evidence of all processes occurring within the organism, at least in trace amounts (Petricoin et al., 2006) [1]. Because of their small size, peptides penetrate cell membranes and epithelial barriers more freely than proteins. Among the peptides found in blood, there are both fragments of proteins secreted by various tissues and performing their function in plasma and receptor ligands: hormones, cytokines and mediators of cellular response (Anderson et al., 2002) [2]. In addition, in minor amounts, there are peptide disease markers (for example, oncomarkers) and even foreign peptides related to pathogenic organisms and infection agents. To propose an approach for detailed peptidome characterization, we carried out an LC-MS/MS analysis of blood serum and plasma samples taken from 20 healthy donors on a TripleTOF 5600+ mass-spectrometer. We prepared samples based on our previously developed method of peptide desorption from the surface of abundant blood plasma proteins followed by standard chromatographic steps (Ziganshin et al., 2011) [3]. The mass-spectrometry peptidomics data presented in this article have been deposited to the ProteomeXchange Consortium (Deutsch et al., 2017) [4] via the PRIDE partner repository with the dataset identifier PXD008141 and 10.6019/PXD008141.
    Matched MeSH terms: Tandem Mass Spectrometry
  5. Jamil SZMR, Rohani ER, Baharum SN, Noor NM
    3 Biotech, 2018 Aug;8(8):322.
    PMID: 30034986 DOI: 10.1007/s13205-018-1336-6
    Callus was induced from mangosteen (Garcinia mangostana L.) young purple-red leaves on Murashige and Skoog basal medium with various combinations of plant growth regulators. Murashige and Skoog medium with 4.44 µM 6-benzylaminopurine and 4.52 µM 2,4-dichlorophenoxyacetic acid was the best for friable callus induction. This friable callus was used for the initiation of cell suspension culture. The effects of different combinations of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid, carbon sources and inoculum sizes were tested. It was found that combination of 2.22 µM 6-benzylaminopurine + 2.26 µM 2,4-dichlorophenoxyacetic acid, glucose (30 g/l) and 1.5 g/50 ml inoculum size was the best for cell growth. Callus and cell suspension cultures were then treated either with 100 µM methyl jasmonate as an elicitor for 5 days, or 0.5 g/l casein hydrolysate as an organic supplement for 7 days. Metabolites were then extracted and profiled using liquid chromatography-time of flight mass spectrometry. Multivariate discriminant analyses revealed significant metabolite differences (P ≤ 0.05) for callus and suspension cells treated either with methyl jasmonate or casein hydrolysate. Based on MS/MS data, methyl jasmonate stimulated the production of an alkaloid (thalsimine) and fatty acid (phosphatidyl ethanolamine) in suspension cells while in callus, an alkaloid (thiacremonone) and glucosinolate (7-methylthioheptanaldoxime) was produced. Meanwhile casein hydrolysate stimulated the production of alkaloids such as 3ß,6ß-dihydroxynortropane and cis-hinokiresinol and triterpenoids such as schidigerasaponin and talinumoside in suspension cells. This study provides evidence on the potential of secondary metabolite production from in vitro culture of mangosteen.
    Matched MeSH terms: Tandem Mass Spectrometry
  6. S J, Iqbal SZ, Talib NH, Hasnol ND
    J Food Sci Technol, 2016 Mar;53(3):1411-7.
    PMID: 27570265 DOI: 10.1007/s13197-015-2137-0
    The present study was focused to investigate the effect of selected spices (turmeric, torch ginger, lemongrass and curry leaves) on the formation of heterocyclic amines (HCAs, IQx, MeIQ, MeIQx, DiMeIQx, IQ, harman, norharman, and AαC) in deep fried lamb meat. Meat samples were marinated with optimized levels of turmeric (4 %), 10 % each of torch ginger, lemon grass, curry leaves at medium (70 °C) and well done (80 °C) doneness temperatures. The concentration of HCAs in deep fried meat samples were analysed using LC-MS/MS technique. The results revealed that torch ginger (10 %) has reduced 74.8 % of Me1Qx (1.39 to 0.35 ng/g) at medium doneness, followed by the 64.7 % reduction, using curry leaves and turmeric at medium degree of doneness. Torch ginger has reduced 86.6 % of AαC (2.59 to 0.40 ng/g) at well done doneness. The most prevalence level of HCAs was found in deep fried meat i.e. DiMeIQ (3.69 ng/g) at well done doneness. The sensory evaluation, using a 7 point hedonic test design for colour and texture in deep fried meat samples were resulted in a preferred color of golden brown and slightly tough texture. The use of local spices in marinating of deep fried lamb meat samples will certainly inhibit/reduce the level of these toxic and harmful HCAs.
    Matched MeSH terms: Tandem Mass Spectrometry
  7. Li Y, Dong HC, Teng ST, Bates SS, Lim PT
    J Phycol, 2018 12;54(6):918-922.
    PMID: 30270437 DOI: 10.1111/jpy.12791
    Pseudo-nitzschia nanaoensis sp. nov. is described from waters around Nan'ao Island (South China Sea), using morphological data and molecular evidence. This species is morphologically most similar to P. brasiliana, but differs by a denser arrangement of fibulae, interstriae, and poroids, as well as by the structure of the valvocopula and the narrow second band. Pseudo-nitzschia nanaoensis constitutes a monophyletic lineage and is well differentiated from other species on the LSU and ITS2 sequence-structure trees. Pseudo-nitzschia nanaoensis makes up the basal node on the LSU tree, and forms a sister clade with a group of P. pungens and P. multiseries on the ITS2 tree. The ability of cultured strains to produce domoic acid was assessed, including its possible induction by the presence of a copepod and brine shrimp, by liquid chromatography-tandem mass spectrometry. However, no strains showed detectable domoic acid.
    Matched MeSH terms: Tandem Mass Spectrometry
  8. Olalere OA, Abdurahman NH, Yunus RBM, Alara OR
    Data Brief, 2018 Aug;19:1627-1630.
    PMID: 30229034 DOI: 10.1016/j.dib.2018.06.034
    This paper contains data from the elemental and phytochemical profiling of black pepper oleoresin extracts using the LC-MS QToF and ICP-MS analysis. In recent years studies have shown the medicinal properties of extracts from these two cultivars of Piper nigrum. The medicinal properties are attributed to the presence of many secondary metabolites and mineral element in them. The phytochemical profiling was conducted using a Liquid Chromatography equipped with an electrospray time-of-flight mass spectrometer detectors. The mass spectrometer was equipped with an electrospray ionization sources operated in positive ion mode. The alkaloid compounds in the optimized black pepper extract were tentatively characterized in accordance with their ions׳ mass fragmentation.
    Matched MeSH terms: Tandem Mass Spectrometry
  9. Mazlan O, Aizat WM, Baharum SN, Azizan KA, Noor NM
    Data Brief, 2018 Dec;21:548-551.
    PMID: 30370325 DOI: 10.1016/j.dib.2018.10.025
    Garcinia mangostana L. (mangosteen) seed is recalcitrant, prone to low temperature and drying which limit its long-term storage. Therefore, it is imperative to understand the metabolic changes throughout its development, to shed some light into the recalcitrant nature of this seed. We performed metabolomics analysis on mangosteen seed at different stages of development; six, eight, ten, twelve and fourteen weeks after anthesis. Seed samples were subjected to methanol extraction prior analysis using liquid chromatography - mass spectrometry (LC-MS). The MS data acquired were analyzed using ProfileAnalysis (version 2.1). This data article refers to the article entitled "Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds" (Mazlan et al., 2018) [1].
    Matched MeSH terms: Tandem Mass Spectrometry
  10. Rashidah Iberahim, Norefrina Shafinaz Md. Nor, Wan Ahmad Yaacob, Nazlina Ibrahim
    Sains Malaysiana, 2018;47:1431-1438.
    The present study was aimed at determining the compounds available in Eleusine indica methanol extract and the effects on
    herpes simplex virus type 1 (HHV1) replication cycle and progeny infectivity. Twelve compounds mostly from the flavonoid
    and phenolic groups were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. The
    effect on replication phases of HHV1 was determined by time-of-addition, time-removal and virus yield reduction assays
    with expression of selected genes analysed by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The extract
    inhibited plaque formation the most during the first 2 h and at 24 h of infection. Plaque formation inhibition was also
    noted at all other time points but at lesser percentage. Treatment with E. indica reduced progeny infectivity when treated
    for 10 h and was dose-dependent. E. indica methanol extract inhibited immediate early, early and late phases of HHV1
    replication cycle by modifying the expression of UL
    54, UL
    27 and UL
    30 genes during the infection. Immunostaining of
    infected cells confirmed that E. indica inhibited mainly Glycoproteins B but not Glycoprotein C and D. Thus, the methanol
    extract of E. indica has the ability to alter HHV1 replication cycle at almost all stages and reduce progeny infectivity.
    Matched MeSH terms: Tandem Mass Spectrometry
  11. Elfikrie N, Ho YB, Zaidon SZ, Juahir H, Tan ESS
    Sci Total Environ, 2020 Apr 10;712:136540.
    PMID: 32050383 DOI: 10.1016/j.scitotenv.2020.136540
    Agricultural activities have been arising along with the use of pesticides. The use of pesticides can impact not only on vector or other pest but also able to harm human health. Pesticide may leach from the irrigation of plant into the groundwater and in surface water. These waters could be sources of drinking water in a pesticides polluted area. This study aims to determine the occurrence pesticides in surface water and pesticides removal efficiency in a conventional drinking water treatment plant (DWTP) and the potential health risk to consumers. The study was conducted in Tanjung Karang, Selangor, Malaysia. Thirty river water samples and eighteen water samples from DWTP were collected. The water samples were extracted using solid phase extraction (SPE) before injected to the ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Five hundreds and ten respondents were interviewed using questionnaires to obtain information for health risk assessments. The results showed that propiconazole had the highest mean concentration (4493.1 ng/L) while pymetrozine had the lowest mean concentration (1.3 ng/L) in river water samples. The pesticides removal efficiencies in the conventional DWTP were 77% (imidacloprid), 86% (propiconazole and buprofezin), 88% (tebuconazole) and 100% (pymetrozine, tricyclazole, chlorantraniliprole, azoxystrobin and trifloxystrobin), respectively. The hazard quotients (HQs) and hazard index (HI) for all target pesticides were <1, indicating there was no significant chronic non-carcinogenic health risk due to consumption of the drinking water. Conventional DWTP was not able to completely remove four pesticide; thus, advanced treatment systems need to be considered to safeguard the health of the community in future.
    Matched MeSH terms: Tandem Mass Spectrometry
  12. Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E
    Food Chem, 2023 Mar 15;404(Pt A):134607.
    PMID: 36272303 DOI: 10.1016/j.foodchem.2022.134607
    This research assessed the influence of pickling, fermentation, germination, and tea brewing on lignan content of a variety of food highly consumed in Malaysia. Lignans have been measured by a validated LC-MS/MS method. Secoisolariciresinol (SECO) was the most abundant compound in fermented and germinated samples. Pickling significantly decreased larisiresinol content by approximately 86 %. Fermentation increased lignan content in a mixture of flaxseed and mung beans (799.9 ± 67.4 mg/100 g DW) compared to the unfermented counterpart (501.4 ± 134.6 mg/100 g DW), whereas the fermentation of soybeans and mung beans did not significantly affect the SECO content. Germination increased lignan content, which reached its peak on day 6 of germination for all the tested matrixes. In tea brew, lignans concentration increased with brewing time reaching its highest concentration at 10 min of brewing. The results of this study expand the knowledge on the effect of processing on lignan content in food.
    Matched MeSH terms: Tandem Mass Spectrometry
  13. Liu Y, Kong KW, Wu DT, Liu HY, Li HB, Zhang JR, et al.
    Food Chem, 2022 Apr 16;374:131635.
    PMID: 34823934 DOI: 10.1016/j.foodchem.2021.131635
    The pomegranate peel is a by-product of pomegranate fruit rich in polyphenols. In this study, pomegranate peel polyphenols were explored using LC-MS/MS, and punicalagin was the most abundant compound. The highest yield (505.89 ± 1.73 mg/g DW) of punicalagin was obtained by ultrasonic-assisted extraction (UAE) with the ethanol concentration of 53%, sample-to-liquid ratio of 1:25 w/v, ultrasonic power of 757 W, and extraction time of 25 min. Punicalagin was further purified by the macroporous resin D101 and prep-HPLC, reaching the purity of 92.15%. The purified punicalagin had the IC50 of 82 ± 0.02 µg/mL against α-glucosidase, similar to the punicalagin standard with IC50 of 58 ± 0.014 µg/mL, both exhibiting a mixed inhibitory mechanism. Molecular docking further revealed that a steric hindrance with the intermolecular energy of -7.99 kcal/mol was formed between punicalagin and α-glucosidase. Overall, pomegranate peel is a promising source of punicalagin to develop anti-diabetic functional foods.
    Matched MeSH terms: Tandem Mass Spectrometry
  14. Kalidas NR, Saminathan M, Ismail IS, Abas F, Maity P, Islam SS, et al.
    Food Chem, 2017 Nov 01;234:348-355.
    PMID: 28551246 DOI: 10.1016/j.foodchem.2017.04.159
    In this study, mannanoligosaccharides (MOS) were isolated from palm kernel cake by aqueous extraction using high temperature and pressure. Structural characterization of MOS was carried out using acid hydrolysis, methylation analysis, ESI-MS/MS and 1D/2D NMR. The prebiotic activity of MOS was evaluated in vitro using two probiotic Lactobacillus strains. Sugar analysis indicated the presence of mannose in each of the oligomers. Methylation and 1D/2D NMR analysis indicated that the MOS have a linear structure consisting of (1→4)-β-d-mannopyranosyl residues. ESI-MS/MS results showed that the isolated mannan oligomers, MOS-III, MOS-IV, MOS-V and MOS-VI consist of tetra-, penta-, hexa-, and hepta-saccharides with molecular weights of 689, 851, 1013 and 1151Da, respectively. Based on the in vitro growth study, MOS-III and MOS-IV was found to be effective in selectively promoting the growth of Lactobacillus reuteri C1 strain as evidenced by the optical density of the culture broth.
    Matched MeSH terms: Tandem Mass Spectrometry
  15. Zainal Abidin SA, Rajadurai P, Chowdhury ME, Ahmad Rusmili MR, Othman I, Naidu R
    Toxins (Basel), 2016 10 18;8(10).
    PMID: 27763534
    Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A₂, ʟ-amino acid oxidase, serine proteases, 5'-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri-it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.
    Matched MeSH terms: Tandem Mass Spectrometry
  16. Gandhi S, Mohamad Razif MF, Othman S, Chakraborty S, Nor Rashid N
    Mol Med Rep, 2023 Feb;27(2).
    PMID: 36633133 DOI: 10.3892/mmr.2023.12933
    The lack of specific and accurate therapeutic targets poses a challenge in the treatment of cervical cancer (CC). Global proteomics has the potential to characterize the underlying and intricate molecular mechanisms that drive the identification of therapeutic candidates for CC in an unbiased manner. The present study assessed human papillomavirus (HPV)‑induced proteomic alterations to identify key cancer hallmark pathways and protein‑protein interaction (PPI) networks, which offered the opportunity to evaluate the possibility of using these for targeted therapy in CC. Comparative proteomic profiling of HPV‑transfected (HPV16/18 E7), HPV‑transformed (CaSki and HeLa) and normal human keratinocyte (HaCaT) cells was performed using the liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) technique. Both label‑free quantification and differential expression analysis were performed to assess differentially regulated proteins in HPV‑transformed and ‑transfected cells. The present study demonstrated that protein expression was upregulated in HPV‑transfected cells compared with in HPV‑transformed cells. This was probably due to the ectopic expression of E7 protein in the former cell type, in contrast to its constitutive expression in the latter cell type. Subsequent pathway visualization and network construction demonstrated that the upregulated proteins in HPV16/18 E7‑transfected cells were predominantly associated with a diverse array of cancer hallmarks, including the mTORC1 signaling pathway, MYC targets V1, hypoxia and glycolysis. Among the various proteins present in the cancer hallmark enrichment pathways, phosphoglycerate kinase 1 (PGK1) was present across all pathways. Therefore, PGK1 may be considered as a potential biomarker. PPI analysis demonstrated a direct interaction between p130 and polyubiquitin B, which may lead to the degradation of p130 via the ubiquitin‑proteasome proteolytic pathway. In summary, elucidation of the key signaling pathways in HPV16/18‑transfected and ‑transformed cells may aid in the design of novel therapeutic strategies for clinical application such as targeted therapy and immunotherapy against cervical cancer.
    Matched MeSH terms: Tandem Mass Spectrometry
  17. Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ
    Mar Pollut Bull, 2023 Jul;192:115019.
    PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019
    Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 
    Matched MeSH terms: Tandem Mass Spectrometry
  18. Taher MA, Tan WN, Chear NJ, Leong CR, Rashid SA, Tong WY
    Nat Prod Res, 2023 May;37(10):1674-1679.
    PMID: 35879820 DOI: 10.1080/14786419.2022.2103127
    This study aimed to assess the antimicrobial activity of endophytic Phyllosticta fallopiae L67 isolated from Aloe vera against diabetic wound microorganisms and characterise their active fraction for biologically important metabolites. The dichloromethane (DCM) extract exhibited the most significant activity with inhibition zones ranging from 11.33 to 38.33 mm. The minimal inhibitory and lethality concentrations of DCM extract ranged from 78.13 to 2500.00 µg/ml and 625.00 to 5000.00 µg/ml, respectively. The extract showed teratogenicity and lethality in the zebrafish model, where peritoneal and hepatic oedema occurred at 62.50 µg/ml, and no abnormality appeared at 31.25 µg/ml. The extract also inhibited more than 82% biofilm formation. Bioassay-guided fractionation on DCM extract yielded 18 fractions and the most active fraction was subjected to UPLC-QTOF-MS/MS analysis. Flavones, stilbenes, flavanonols, isoflavonoids, phenolic glycosides and phenol derivatives were detected. In conclusion, endophytic P. fallopiae possessed bioactive metabolites with significant antimicrobial activity against diabetic wound microorganisms.
    Matched MeSH terms: Tandem Mass Spectrometry
  19. Vasudevan V, Prabaharan J, Krishnan N, K A, Gopinath SCB, Raman P
    Anal Methods, 2023 Aug 03;15(30):3735-3751.
    PMID: 37493014 DOI: 10.1039/d3ay00704a
    Borassus flabellifer L., commonly known as Asian palmyra, is native to South and Southeast Asia. The endosperms of B. flabellifer (known as nungu in Dravidian culture) are widely consumed during the summer season. It is rich in various nutrients and helps in reducing weight, treating skin and digestive issues, lowering body temperature, and managing migraines and diabetes. This study focuses on identifying the small molecules and proteins from the two varieties of B. flabellifer tender fruit endosperms collected from districts around Chennai, Tamil Nadu, India. The collected free nuclear endosperm was subjected to direct extraction and the mesocarp and cellular endosperms were lyophilized and homogenized. Metabolites were extracted by hexane, methanol, and chloroform and investigated using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The compounds identified were from the classes of carboxylic acids, flavonoids, amino acids, alkaloids, fatty acids, oligopeptides, vitamins, and glycosides. High-performance liquid chromatography (HPLC) technique was employed to estimate the quantity of amino acids, wherein the total amino acid in the green variety was found to be higher than in the black variety. Proteins were identified after simulating with a gastrointestinal enzyme using liquid chromatography tandem mass spectrometry (LC-MS/MS)-based peptide mass fingerprinting. The different mineral oxides present in the tender fruit endosperm were identified using X-ray diffraction studies, which confirmed the presence of mineral oxides, such as Br1.25ClO2.75Pb3.88, calcium zirconium tantalum oxide, and barium fluoroniobate. This study validates the presence of bioactive metabolites in green and black varieties of B. flabellifer tender fruit endosperm with a range of activities, such as anti-inflammatory, antibacterial, anticancer, and anti-diabetic properties.
    Matched MeSH terms: Tandem Mass Spectrometry
  20. Chua LS, Abdullah FI, Lim TK, Lin Q
    Food Chem, 2024 Jan 30;432:137261.
    PMID: 37651783 DOI: 10.1016/j.foodchem.2023.137261
    This study was aimed to extract bioactive peptides from the white and purple flower varieties of Orthosiphon aristatus leaves. The herb is well known for its pharmacological importance, possibly attributed to its plant proteins. Phenol based extraction was used to extract plant proteins, and then hydrolysed by proteolytic enzymes such as trypsin (serine protease) and pepsin (aspartic protease). MS/MS analysis revealed that 145 and 125 proteins were detected from the white and purple flower varieties, respectively. Trypsin hydrolysates were showed to have a higher degree of hydrolysis (24-33%), resulting in higher antioxidant and antibacterial activities. The white flower of trypsin hydrolysates showed a higher radical scavenging activity which could be attributed to its higher content of stress proteins (19%). However, trypsin hydrolysates from the purple flower showed higher ferric reducing power and bacterial growth inhibition. The performance of hydrolysates was better than ampicillin in inhibiting Acinetobacter baumanni and Staphylococcus aureus.
    Matched MeSH terms: Tandem Mass Spectrometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links