OBJECTIVE: We aimed to identify a posteriori dietary patterns for Chinese, Malay, and Indian ethnic groups in an urban Asian setting, compare these with a priori dietary patterns, and ascertain associations with cardiovascular disease risk factors including hypertension, obesity, and abnormal blood lipid concentrations.
METHODS: We used cross-sectional data from 8433 Singapore residents (aged 21-94 y) from the Multi-Ethnic Cohort study of Chinese, Malay, and Indian ethnicity. Food consumption was assessed using a validated 169-item food-frequency questionnaire. With the use of 28 food groups, dietary patterns were derived by principal component analysis, and their association with cardiovascular disease risk factors was assessed using multiple linear regression. Associations between derived patterns and a priori patterns (aHEI-2010-Alternative Healthy Eating Index-2010, aMED-alternate Mediterranean Diet, and DASH-Dietary Approaches to Stop Hypertension) were assessed, and the magnitude of associations with risk factors compared.
RESULTS: We identified a "healthy" dietary pattern, similar across ethnic groups, and characterized by high intakes of whole grains, fruit, dairy, vegetables, and unsaturated cooking oil and low intakes of Western fast foods, sugar-sweetened beverages, poultry, processed meat, and flavored rice. This "healthy" pattern was inversely associated with body mass index (BMI; in kg/m2) (-0.26 per 1 SD of the pattern score; 95% CI: -0.36, -0.16), waist circumference (-0.57 cm; 95% CI: -0.82, -0.32), total cholesterol (-0.070 mmol/L; 95% CI: -0.091, -0.048), LDL cholesterol (-0.054 mmol/L; 95% CI: -0.074, -0.035), and fasting triglycerides (-0.22 mmol/L; 95% CI: -0.04, -0.004) and directly associated with HDL cholesterol (0.013 mmol/L; 95% CI: 0.006, 0.021). Generally, "healthy" pattern associations were at least as strong as a priori pattern associations with cardiovascular disease risk factors.
CONCLUSION: A healthful dietary pattern that correlated well with a priori patterns and was associated with lower BMI, serum LDL cholesterol, total cholesterol, and fasting triglyceride concentrations was identified across 3 major Asian ethnic groups.
METHODS: The study was on 2322 non-institutionalized Malaysian elderly. The hierarchy logistic regression analysis was applied to estimate the risk of independent variables for urinary incontinence among respondents.
RESULTS: The findings indicated that approximately 3.80% of subjects had urinary incontinence. In addition, constipation was found a significant factor that increased the risk of urinary incontinence in samples (p=0.006; OR=3.77). The increase in dietary monounsaturated fat (p=0.038; OR=0.59) and plasma triglyceride levels (p=0.029; OR=0.56) significantly reduced the risk of incontinence in subjects. Many of suspected variables including socio-demographic factors, diseases, nutritional minerals, blood components and body weight were non-relevant factors to urinary incontinence in respondents.
CONCLUSIONS: Constipation increased the risk of urinary incontinence in subjects, and increase in dietary monounsaturated fat and plasma triglyceride levels decreased the risk.
METHODS: This human postprandial study evaluated 3 edible fat blends with differing polyunsaturated to saturated fatty acids (P/S) ratios (POL = 0.27, AHA = 1.00, PCAN = 1.32). A cross-over design included mildly hypercholestrolemic subjects (9 men and 6 women) preconditioned on test diets fats at 31% energy for 7 days prior to the postprandial challenge on the 8th day with 50 g test fat. Plasma lipids and lipoproteins were monitored at 0, 1.5, 3.5, 5.5 and 7 hr.
RESULTS: Plasma triacylglycerol (TAG) concentrations in response to POL, AHA or PCAN meals were not significant for time x test meal interactions (P > 0.05) despite an observed trend (POL > AHA > PCAN). TAG area-under-the-curve (AUC) increased by 22.58% after POL and 7.63% after PCAN compared to AHA treatments (P > 0.05). Plasma total cholesterol (TC) response was not significant between meals (P > 0.05). Varying P/S ratios of test meals significantly altered prandial high density lipoprotein-cholesterol (HDL-C) concentrations (P AHA > PCAN). Paired comparisons was significant between POL vs PCAN (P = 0.009) but not with AHA or between AHA vs PCAN (P > 0.05). A significantly higher HDL-C AUC for POL vs AHA (P = 0.015) and PCAN (P = 0.001) was observed. HDL-C AUC increased for POL by 25.38% and 16.0% compared to PCAN and AHA respectively. Plasma low density lipoprotein-cholesterol (LDL-C) concentrations was significant (P = 0.005) between meals and significantly lowest after POL meal compared to PCAN (P = 0.004) and AHA (P > 0.05) but not between AHA vs PCAN (P > 0.05). AUC for LDL-C was not significant between diets (P > 0.05). Palmitic (C16:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids in TAGs and cholesteryl esters were significantly modulated by meal source (P