RESULTS: Further investigation into CL bioactive fraction (II-F7) revealed significant dose-dependent growth inhibitory effects on MCF-7 cells, which were attributed to the induction of apoptosis, as evidenced by the presence of apoptotic bodies, fragmented DNA, and disruption of mitochondrial membrane potential. Additionally, treatment with CL bioactive fraction (II-F7) upregulated the expression of pro-apoptotic genes (DDIT3, GADD45G and HRK) and significantly increased the activities of caspase-8 and caspase-9.
CONCLUSION: Overall, this study suggests that bioactive fraction (II-F7) from CL extract has significant and selective cytotoxicity against MCF-7 cells through inducing apoptosis and has potential as a therapeutic agent for breast cancer treatment.
MATERIALS AND METHODS: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting.
RESULTS: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells.
CONCLUSIONS: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.