Displaying publications 41 - 60 of 62 in total

Abstract:
Sort:
  1. Nge CE, Gan CY, Low YY, Thomas NF, Kam TS
    Org. Lett., 2013 Sep 20;15(18):4774-7.
    PMID: 23991636 DOI: 10.1021/ol4021404
    Two new indole alkaloids, voatinggine (1) and tabertinggine (2), which are characterized by previously unencountered natural product skeletons, were isolated from a Malayan Tabernaemontana species. The structures and absolute configuration of these alkaloids were determined using NMR and MS analysis, and X-ray diffraction analysis. A possible biogenetic pathway to these novel alkaloids from an iboga precursor, and via a common cleavamine-type intermediate, is presented.
    Matched MeSH terms: Indole Alkaloids/chemistry
  2. Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS
    Org. Lett., 2009 Sep 3;11(17):3962-5.
    PMID: 19708704 DOI: 10.1021/ol9016172
    A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
    Matched MeSH terms: Indole Alkaloids/chemistry
  3. Kam TS, Tan SJ, Ng SW, Komiyama K
    Org. Lett., 2008 Sep 4;10(17):3749-52.
    PMID: 18683934 DOI: 10.1021/ol801354s
    A cytotoxic bisindole alkaloid possessing an unprecedented structure in which two indole moieties are bridged by an aromatic spacer unit has been isolated from Alstonia angustifolia. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway from pyrocatechuic acid and pleiocarpamine is presented.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  4. Feng X, Jiang G, Xia Z, Hu J, Wan X, Gao JM, et al.
    Org. Lett., 2015 Sep 18;17(18):4428-31.
    PMID: 26315849 DOI: 10.1021/acs.orglett.5b02046
    The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.
    Matched MeSH terms: Indole Alkaloids/chemistry
  5. Wong SP, Gan CY, Lim KH, Ting KN, Low YY, Kam TS
    Org. Lett., 2015 Jul 17;17(14):3628-31.
    PMID: 26183592 DOI: 10.1021/acs.orglett.5b01757
    A new monoterpene indole alkaloid characterized by an unprecedented pentacyclic cage skeleton, arboridinine (1), was isolated from a Malaysian Kopsia species. The structure and absolute configuration of the alkaloid were determined based on NMR, MS, and X-ray diffraction analysis. A possible biogenetic pathway from a pericine precursor is presented.
    Matched MeSH terms: Indole Alkaloids/chemistry
  6. Gan CY, Yoganathan K, Sim KS, Low YY, Lim SH, Kam TS
    Phytochemistry, 2014 Dec;108:234-42.
    PMID: 25442910 DOI: 10.1016/j.phytochem.2014.09.014
    Eleven indole alkaloids, comprising four corynanthean, two eburnane, one aspidofractinine, one secoleuconoxine, one andranginine, and two pauciflorine type alkaloids were isolated from the stem-bark and leaf extracts of Kopsia pauciflora. Their structures were determined using NMR and MS analyses. The catharinensine type alkaloid kopsirensine B and the secoleuconoxine alkaloid arboloscine A showed moderate to weak activity in reversing MDR in vincristine-resistant KB cells. The alkaloid content was markedly different compared to that of a sample from Malaysian Borneo.
    Matched MeSH terms: Indole Alkaloids/chemistry
  7. Lim SH, Low YY, Sinniah SK, Yong KT, Sim KS, Kam TS
    Phytochemistry, 2014 Feb;98:204-15.
    PMID: 24342109 DOI: 10.1016/j.phytochem.2013.11.014
    A total of seventeen alkaloids, comprising six macroline (including alstofolinine A, a macroline indole incorporating a butyrolactone ring-E), two ajmaline, one sarpagine, and eight akuammiline alkaloids, were isolated from the stem-bark and leaf extracts of the Malayan Alstonia macrophylla. The structure and relative configurations of these alkaloids were established using NMR, MS and in several instances, confirmed by X-ray diffraction analysis. Six of these alkaloids were effective in reversing multidrug-resistance (MDR) in vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  8. Tan SJ, Lim KH, Subramaniam G, Kam TS
    Phytochemistry, 2013 Jan;85:194-202.
    PMID: 22995929 DOI: 10.1016/j.phytochem.2012.08.016
    Nine bisindole alkaloids, comprising four belonging to the macroline-sarpagine group, and five belonging to the macroline-pleiocarpamine group, were isolated from the stem-bark extracts of Alstonia angustifolia (Apocynacea). Their structures were established using NMR and MS analyses.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  9. Ku WF, Tan SJ, Low YY, Komiyama K, Kam TS
    Phytochemistry, 2011 Dec;72(17):2212-8.
    PMID: 21889176 DOI: 10.1016/j.phytochem.2011.08.001
    A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  10. Gan CY, Low YY, Robinson WT, Komiyama K, Kam TS
    Phytochemistry, 2010 Aug;71(11-12):1365-70.
    PMID: 20542302 DOI: 10.1016/j.phytochem.2010.05.015
    Leucofoline and leuconoline, representing the first members of the aspidospermatan-aspidospermatan and eburnane-sarpagine subclasses of the bisindole alkaloids, respectively, were isolated from the Malayan Leuconotis griffithii. The structures of these bisindole alkaloids were established using NMR and MS analysis, and in the case of leuconoline, confirmed by X-ray diffraction analysis. Both alkaloids showed weak cytotoxicity towards human KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  11. Lim KH, Sim KM, Tan GH, Kam TS
    Phytochemistry, 2009 Jun;70(9):1182-1186.
    PMID: 19643450 DOI: 10.1016/j.phytochem.2009.06.010
    Four tetracyclic oxindole alkaloids, 7(R)- and 7(S)-geissoschizol oxindole (1 and 2), 7(R),16(R)- and 7(S),16(R)-19(E)-isositsirikine oxindole (3 and 4), in addition to a taberpsychine derivative, N(4)-demethyltaberpsychine (5), were isolated from the Malayan Tabernaemontana corymbosa and the structures were established using NMR and MS analysis.
    Matched MeSH terms: Indole Alkaloids/chemistry
  12. Lim KH, Thomas NF, Abdullah Z, Kam TS
    Phytochemistry, 2009 Feb;70(3):424-9.
    PMID: 19217125 DOI: 10.1016/j.phytochem.2009.01.001
    Two seco-tabersonine alkaloids, jerantiphyllines A and B, in addition to a tabersonine hydroxyindolenine, jerantinine H, and a recently reported vincamine alkaloid 7, were isolated from the leaf extract of the Malayan Tabernaemontana corymbosa and the structures were established using NMR and MS analysis. Biomimetic conversion of jerantinines A and E to their respective vincamine and 16-epivincamine derivatives were also carried out.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  13. Lim SH, Low YY, Subramaniam G, Abdullah Z, Thomas NF, Kam TS
    Phytochemistry, 2013 Mar;87:148-56.
    PMID: 23200029 DOI: 10.1016/j.phytochem.2012.11.005
    Lumusidines A-D, bisindole alkaloids of the macroline-macroline type, and one of the macroline-pleiocarpamine type, villalstonidine F, were isolated from the stem-bark extract of Alstonia macrophylla (Apocynaceae). The structures and absolute configurations of these alkaloids were established using NMR, MS, and X-ray diffraction analyses.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  14. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  15. Kam TS, Sim KM
    Phytochemistry, 2003 Jul;63(5):625-9.
    PMID: 12809725
    Four bisindole alkaloids, viz., 19'(S)-hydroxyconodurine, conodurinine, 19'(S)-hydroxyconoduramine, and 19'(S)-hydroxyervahanine A, in addition to conodurine and ervahanine A, were obtained from the leaf and stem-bark extracts of Tabernaemontana corymbosa. The structures of the new alkaloids were determined using NMR and MS analysis.
    Matched MeSH terms: Indole Alkaloids/chemistry
  16. Tang SY, Tan CH, Sim KS, Yong KT, Lim KH, Low YY, et al.
    Phytochemistry, 2023 Apr;208:113587.
    PMID: 36646163 DOI: 10.1016/j.phytochem.2023.113587
    Eight undescribed iboga alkaloids, polyneurines A-H, were isolated from the bark of Tabernaemontana polyneura. The structures of these alkaloids were established by interpretation of the MS and NMR data, while the configurations were determined using GIAO NMR calculations and DP4+ probability analysis, TDDFT-ECD method, or X-ray diffraction analysis. Polyneurine A possesses a γ-lactone unit embedded within the iboga skeleton, while polyneurines D and E incorporate a formylmethyl moiety at C-3 of the iboga skeleton. Biosynthetic pathways towards the formation of polyneurines A, C, D, and E were proposed.
    Matched MeSH terms: Indole Alkaloids/chemistry
  17. Tan CH, Sim DSY, Lim SH, Mohd Mohidin TB, Mohan G, Low YY, et al.
    Planta Med, 2022 Nov;88(14):1325-1340.
    PMID: 35100653 DOI: 10.1055/a-1755-5605
    Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.
    Matched MeSH terms: Indole Alkaloids/chemistry
  18. Liew SY, Looi CY, Paydar M, Cheah FK, Leong KH, Wong WF, et al.
    PLoS One, 2014;9(2):e87286.
    PMID: 24551054 DOI: 10.1371/journal.pone.0087286
    In this study, a new apoptotic monoterpenoid indole alkaloid, subditine (1), and four known compounds were isolated from the bark of Nauclea subdita. Complete (1)H- and (13)C- NMR data of the new compound were reported. The structures of isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS. All five compounds were screened for cytotoxic activities on LNCaP and PC-3 human prostate cancer cell-lines. Among the five compounds, the new alkaloid, subditine (1), demonstrated the most potent cell growth inhibition activity and selective against LNCaP with an IC50 of 12.24±0.19 µM and PC-3 with an IC50 of 13.97±0.32 µM, compared to RWPE human normal epithelial cell line (IC50 = 30.48±0.08 µM). Subditine (1) treatment induced apoptosis in LNCaP and PC-3 as evidenced by increased cell permeability, disruption of cytoskeletal structures and increased nuclear fragmentation. In addition, subditine (1) enhanced intracellular reactive oxygen species (ROS) production, as reflected by increased expression of glutathione reductase (GR) to scavenge damaging free radicals in both prostate cancer cell-lines. Excessive ROS could lead to disruption of mitochondrial membrane potential (MMP), release of cytochrome c and subsequent caspase 9, 3/7 activation. Further Western blot analyses showed subditine (1) induced down-regulation of Bcl-2 and Bcl-xl expression, whereas p53 was up-regulated in LNCaP (p53-wild-type), but not in PC-3 (p53-null). Overall, our data demonstrated that the new compound subditine (1) exerts anti-proliferative effect on LNCaP and PC-3 human prostate cancer cells through induction of apoptosis.
    Matched MeSH terms: Indole Alkaloids/chemistry
  19. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Indole Alkaloids/chemistry
  20. Kam TS, Choo YM
    Alkaloids Chem Biol, 2006;63:181-337.
    PMID: 17133716
    Matched MeSH terms: Indole Alkaloids/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links