METHODS: The in vitro anti-TB activity of different solvent partitions of the plant materials was determined against M. tuberculosis H37Rv using a tetrazolium colorimetric microdilution assay. The phytochemical compounds in the most active partition of each plant were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The effects of these partitions on the growth kinetics of the mycobacteria were evaluated over 7-day treatment period in a batch culture system. Their effects on the mycobacterial cellular integrity were observed under a scanning electron microscope (SEM).
RESULTS: The respective n-hexane partition of C. speciosus, C. citratus, and T. coronaria exhibited the highest anti-TB activity with minimum inhibitory concentrations (MICs) of 100-200 μg/mL and minimum bactericidal concentration (MBC) of 200 μg/mL. GC-MS phytochemical analysis of these active partitions revealed that majority of the identified compounds belonged to lipophilic fatty acid groups. The active partitions of C. speciosus and T. coronaria exhibited high cidal activity in relation to time, killing more than 99% of the cell population. SEM observations showed that these active plant partitions caused multiple structural changes indicating massive cellular damages.
CONCLUSIONS: The n-hexane partition of the plant materials exhibited promising in vitro anti-TB activity against M. tuberculosis H37Rv. Their anti-TB activity was supported by their destructive effects on the integrity of the mycobacterial cellular structure.
KEY FINDINGS: T. corymbosa (Roxb. ex Wall.) parts are used as poultice, boiled juice, decoctions and infusions for treatment against ulceration, fracture, post-natal recovery, syphilis, fever, tumours and orchitis in Malaysia, China, Thailand and Bangladesh. Studies recorded alkaloids as the predominant phytochemicals in addition to phenols, saponins and sterols with vast bioactivities such as antimicrobial, analgesic, anthelmintic, vasorelaxation, antiviral and cytotoxicity.
SUMMARY: An evaluation of scientific data and traditional medicine revealed the medicinal uses of different parts of T. corymbosa (Roxb. ex Wall.) across Asia. Future studies exploring the structure-bioactivity relationship of alkaloids such as jerantinine and vincamajicine among others could potentially improve the future application towards reversing anticancer drug resistance.