Displaying publications 41 - 60 of 250 in total

Abstract:
Sort:
  1. Abdul Wahab MF, Mohamad Ghani NI, Kuppuswamy R
    Forensic Sci Int, 2012 Nov 30;223(1-3):53-63.
    PMID: 22955030 DOI: 10.1016/j.forsciint.2012.07.020
    Most of the automotive companies use cast iron for their engine blocks. Restoration of obliterated number on these iron surfaces by chemical etching is known to be quite difficult. Heating of the obliterated surface using oxyacetylene flame is an alternative recovery treatment suggested in literature and used in practice. However chemical etching has been established to be the most sensitive technique for detection of metal deformation present under stamped serial numbers. Hence, the current work investigated the suitability of some common etchants on cast iron surfaces with a view to determining the most suitable one for revealing the obliterated marks. The reagents tested were mostly copper containing Fry's reagent and its modifications. Two cast iron engine blocks (3.29%C and 3.1%C) of two cars--a Proton Saga and a Toyota--were utilized for the experiments. The engine blocks were cut into several small plates and each plate was stamped with some numerical characters at 8 kN load using Instron Table Mounted Universal Testing Machine. The depth of stamping impression varied between 0.2 mm and 0.3 mm. The stamped number was completely ground off manually using a metal file. The grounded surface was then polished smooth using emery papers and etched with a few selected reagents mostly by swabbing. Experimental results showed that a modified Fry's composition consisting of 4 5g CuCl(2), 100 mL HCl, and 180 mL H(2)O restored the number with better contrast at a reasonably shorter time. The above reagent is a slightly modified form of one of the Fry's original compositions--45 g CuCl(2), 180 mL HCl, and 100 mL H(2)O. Quite importantly the proposed reagent restored the original stamped numbers of both Proton and Toyota cars and also a Mitsubishi car that had been obliterated. The most widely used Fry's composition (90 g CuCl(2), 120 mL HCl and 100 mL H(2)O), although recovered the obliterated number, did not cause the desired contrast.
    Matched MeSH terms: Paper
  2. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Paper
  3. Edhuan Ismail, Mohd Shukri Sirat, Abd. Malek Abdul Hamid, Raihan Othman, Mohd Mohd Hanafi Ani, Asyadi Azam Mohd Abid
    Sains Malaysiana, 2017;46:1011-1016.
    Various production methods have been developed for graphene production, but each of them falls short in either the economic or quality aspect. In this paper, we present the flame deposition method, a modified chemical vapor deposition (CVD) that uses an open-flame. In this method, resulting carbon deposits were found to be graphitic in nature, thereby suggesting multilayer graphene growth in a very short reaction time of 5 min. Furthermore, the deposits were transferred onto a cyanoacrylate plastic substrate and its sheet resistance was measured to be 81 ohm/square. The results showed that open-flame deposition exhibits high potential for low-cost, low-energy and high-quality production of graphene.
    Matched MeSH terms: Paper
  4. Saiful Azhar, S., Suhardy, D., Kasim, F.H., Nazry Saleh, M.
    MyJurnal
    The amount of sugarcane bagasse and rice straw in the state of Perlis (Malaysia) is abundant while its utilization is still limited. One of the alternatives for the bagasse and straw utilization is as pulp raw material. This paper reviews on pulp from sugarcane bagasse and rice straw and its suitability for paper production. In this study, the pulp was extracted by the Soxhlet extraction method. The objective of this study was to investigate the cellulose, lignin and silica content of the pulp from sugarcane bagasse and rice straw. For rice straw, the presence of large amount of pentosanes in the pulp and black liquors, which also contain silica were decreased the using of straw in the paper industry. Therefore, formic acid pulping and NaOH treatment are studied to reduce or prevent silica. The isolated pulp samples were further characterized by Scanning Electron Microscope (SEM) to investigate their fiber dimensions.
    Matched MeSH terms: Paper
  5. Siti Roshayu Hassan, Nastaein Qamaruz Zaman, Irvan Dahlan
    MyJurnal
    The performance and operational characteristics of a laboratory scale modified anaerobic hybrid baffled (MAHB) reactor were studied using recycled paper mill effluent (RPME) wastewater. MAHB reactor was continuously operated at 35°C for 90 days with organic loading rate (OLR) increased from 0.14 to 0.57 g/L/dy. This present study demonstrated that the system was proficient in treating low strength RPME wastewater. Highest carbon oxygen demand (COD) removal were recorded up to 97% for an organic loading of 0.57 g /L/dy while effluent alkalinity assured that the system pH in the MAHB compartments were of great advantages to acidogens and methanogens respectively. Methane and biogas production rate shows increment as the load increases, which evidently indicated that the most significant approach to enhance gas production rates involves the increment of incoming substrate moderately. Variations of biogas and volatile fatty acid (VFA) in different compartments of MAHB reactor indicated the chronological degradation of substrate. The compartmental structure of MAHB reactor provided its strong ability to resist shock loads. From this present study, it shows the potential usage of MAHB reactor broadens the usage of multi-phase anaerobic technology for industrial wastewater treatment.
    Matched MeSH terms: Paper
  6. Selambakkan, Sarala, Khomsaton Abu Bakar, Jamaliah Shariff, Suhairi Alimon
    MyJurnal
    This paper studies about water obtained from fish pond of fisheries research centre. Usual water
    quality parameters such as pH, COD, Turbidity and Ammonia content were analyzed before and
    after irradiation. Electron beam irradiation was used to irradiate the water with the dose 100 kGy,
    200 kGy and 300 kGy. Only high dose was applied on this water as only a limited amount of
    samples was supplied. All the parameters indicated a slight increase after irradiation except for the
    ammonia content, which showed a gradual decrease as irradiation dose increases. Sample
    condition was changed before irradiation in order to obtain more effective results in the following
    batch. The water sample from fisheries was diluted with distilled water to the ratio of 1:1.This was
    followed with irradiation at 100 kGy, 200 kGy and 300 kGy. The results still showed an increase in
    all parameters after irradiation except for ammonia content. For the following irradiation batch,
    the pH of the sample was adjusted to pH 4 and pH 8 before irradiation. For this sample the
    irradiation dose selected was only 100 kGy. A higher value of ammonia was observed for the
    sample with pH 4 after irradiation. Other parameters were almost the same as the first two batches
    Matched MeSH terms: Paper
  7. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
    Matched MeSH terms: Paper
  8. Alomari. Nashwan K., Badronnisa Yusuf, Thamer Ahmed Mohammed Ali, Abdul Halim Ghazali
    MyJurnal
    Branching channel flow refers to any side water withdrawals from rivers or main channels.
    Branching channels have wide application in many practical projects, such as irrigation and drainage
    network systems, water and waste water treatment plants, and many water resources projects. In the
    last decades, extensive theoretical and experimental investigations of the branching open channels
    have been carried out to understand the characteristics of this branching flow, varying from case
    studies to theoretical and experimental investigations. The objectives of this paper are to review and
    summarise the relevant literatures regarding branching channel flow. These literatures were reviewed
    based on flow characteristics, physical characteristics, and modeling of the branching flow.
    Investigations of the flow into branching channel show that the branching discharge depends on many
    interlinked parameters. It increases with the decreasing of the main channel flow velocity and Froude
    number at the upstream of the branch channel junction. Also it increases with the increasing of the
    branch channel bed slope. In subcritical flow, water depth in the branch channel is always lower than
    the main channel water depth. The flow diversion to the branch channel leads to an increase of water
    depth at the downstream of the main channel. From the review, it is important to highlight that most
    of the study concentrated on flow characteristics in a right angle branch channel with a rigid boundary.
    Investigations on different branching angles with movable bed have still to be explored.
    Matched MeSH terms: Paper
  9. Fazeli, A., Bakhtvar, F., Jahanshaloo, L., Nor Azwadi, C. S.
    MyJurnal
    Evidence on rising global temperature, melting of ice caps, and withdrawal of glaciers
    brings attentions to the enhancement of energy efficiency in energy intensive industries. Having a
    realistic comparison between one plant and the best practice technology (BPT) in operation in the field
    helps significantly to distinguish and diagnose the potentials where measures towards energy efficiency
    improvement would be applicable. In this regard, for manufacturing industries, one of the most widely
    used energy benchmarking tools is the Energy Benchmark Curve. An energy benchmark curve plots the
    efficiency of plants as a function of the total production volume from all similar plants or as a function
    of the total number of plants that operate at that level of efficiency or worse. This paper reviews the
    methodology through which the benchmark curve is obtained for a specific industry followed by a
    comparison of energy intensity for the iron and steel industry among China and the US. According to
    the international energy benchmark curve for the iron and steel industry, the savings potentials per ton
    of crude steel for the US. and China have been respectively 4.1 and 7.1 gigajoule comparing with the
    BPT in the field. Finally, an overview over certain measures to enhance efficiency of such plants is
    presented.
    Matched MeSH terms: Paper
  10. M.N.N. Husna, R.M.R. Ahmad, R.E. Intan, C.H. Asmawati
    ASM Science Journal, 2013;7(1):59-66.
    MyJurnal
    Throughout the years, the construction industry has made an important contribution to the Malaysian economy. Moreover, the Ninth Malaysia Plan (2006–2010) has also played a significant role in the demands of executing major residential housing project developments where it has been observed that construction waste was one of the priority waste streams. Due to the increasing number in the population that is actively involved in economic activities, and the modernization of the country, the types of construction waste that are being produced, and identifying the source such as waste are becoming more complex. Therefore, appropriate actions and approaches are needed to be taken with respect to its effective management in handling the solid waste from construction sites. This paper is intended to review the issues and the challenges enclosed within the supply chain management mechanisms in order for improving construction waste management. Throughout this review, useful information and better understanding concerning the current issues, challenges and the supply chain management mechanisms would be made inclusive in the field to be explored. The findings would also assist in improving the quality and awareness on the construction waste management that is being practiced.
    Matched MeSH terms: Paper
  11. Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A., Zaman, H.M.D.K.
    MyJurnal
    A study on the effects of alkali treatment and compatibilising agent on the tensile properties of pineappleleaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite is presented in this paper. Thetensile properties of natural fibre reinforced polymer composites are mainly influenced by the interfacialadhesion between the matrix and the fibres. In this study, several chemical modifications were employedto improve the interfacial matrix-fibre bonding and this resulted in the enhancement of tensile propertiesof the composites. In this study, the surface modification of pineapple fibre with alkali treatments andcompatibilizer were used to improve the adhesion between hydrophilic pineapple fibre and hydrophobicpolymer matrix. There are two concentrations of NaOH treatments and compatibilizer used in this study,namely, 2 and 4 wt. %. The results show that the alkali treated fibre and the addition of compatibilisingagent in PALF/HIPS composites have improved the tensile strength and tensile modulus of the composites.
    Matched MeSH terms: Paper
  12. Ahmad, Z., Wee, L.S., Fauzi, M.A.
    ASM Science Journal, 2011;5(1):27-35.
    MyJurnal
    This paper reports the mechanical properties of cement composite boards made using wood-wool from a lesser known Malaysian timber species. A total of 108 specimens were fabricated using Portland cement (Type I) and wood-wool from Kelampayan (Neolamarckia cadamba). The cement to wood ratio of the specimens was 2 to 1 by weight. The aim of the study was to determine the density; flexural, compressive and tensile strength of wood-wool cement composite boards (WWCCB) by studying boards with wood-wool sized 1.5 mm, 2.5 mm and 3.5 mm and board thickness 25 mm, 50 mm and 75mm. The physical and mechanical properties of the boards were evaluated according to ASTM D 1037-96a (Standard testing method for evaluating properties of wood-based fibre and particle panel materials) and MS934:1986. Results showed that mechanical properties of WWCCB were greatly influenced by the density; as the density decreased, the mechanical strengths also decreased. However, the strength properties of the composite boards did not display a similar trend when subjected to different types of loading conditions. The compressive strength increased with thicker boards (50 mm and 75 mm) but the modulus of elasticity and modulus of rupture declined as the thickness of the board was increased.
    Matched MeSH terms: Paper
  13. Zaifol Samsu, Muhamad Daud, Siti Radiah Mohd Kamarudin, Nur Ubaidah Saidin, Abdul Aziz Mohamed, Mohd Sa’ari Ripin, et al.
    MyJurnal
    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for
    future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure.
    Matched MeSH terms: Paper
  14. Siregar, Januar Parlaungan, Mohd. Sapuan Salit, Mohd. Zaki Ab. Rahman, Khairul Zaman Hj. Mohd. Dahlan
    MyJurnal
    This paper studied the thermal behaviour of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were used to measure the thermal characteristic of HIPS/PALF composites. In particular, the TGA analysis was utilized to measure the degradation and decomposition of materials in neat polystyrene, pineapple fibre, and the composites. The measurements were carried out in the temperature of 25°C – 800°C, at a heating rate of 20°C min-1 and the nitrogen gas flow was 50 mL min-1. The temperature of the DSC analysis was programmed to be between 25°C – 300°C. The results from TGA analysis show that the addition of pineapple fibre has improved the thermal stability of the composites as compared to neat HIPS. In addition, the effects of compatibilising agent and surface modification of PALF with alkali treated were also determined and compared.
    Matched MeSH terms: Paper
  15. Lian, C.B., Ngeow, W.C.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    Formalin is a clear solution of 37% formaldehyde in water. It is used in dentistry as a disinfectant, antiseptic and mainly as tissue fixative for preserving biologic specimens for histopathologic examination. The human knowledge on systemic formaldehyde intoxication is inadequate as only few cases of formalin ingestion have been reported. This paper presents a brief communication of the adverse effect of formalin to the human tissue.
    Matched MeSH terms: Paper
  16. Azraf Azman, Mohd Rizal Mamat@Ibrahim, Anwar Abdul Rahman, Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Muhammad Rawi Mohd Zin, et al.
    MyJurnal
    The temperature profile of a cryogenic system for cooling of beryllium filter of a small-angle neutron scattering (SANS) instrument of TRIGA MARK II PUSPATI research reactor was investigated using computational fluid dynamics (CFD) modeling and simulation. The efficient cooling of beryllium filter is important for obtaining higher cold neutron transmission for the SANS instrument. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat
    flux. The temperature simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium.
    Matched MeSH terms: Paper
  17. Ilanur Muhaini Mohd Noor, Muhamad Kamal Mohammed Amin
    MyJurnal
    This paper aim is to design an education kit for wastewater system that can maintain
    the standard parameters of neutralized wastewater by maintaining the suitable pH
    (Potential Hydronium) level and temperature of the wastewater from industry by using
    fuzzy controller. This study is capable to control the unwanted bacteria by automatic
    regulatory and monitoring the temperature, pH and water level. Fuzzy logic method is
    use to control and monitor pH level as well as the temperature during clarifying process
    because pH control process is a complex physical-chemistry process of strong
    individuality of time-varying and non-linearity properties. Pumps used in the prototype
    need to be controlled precisely to enable either acid or base to be pumped into mix
    tank of the wastewater treatment. The control and monitoring system, which has been
    designed through LabVIEW front panel will ease end user in inspection of the
    parameters involve in wastewater treatment. The entire system output could be
    observed remotely in Data Dashboard application in smartphone or tablet. The GUI
    was designed and interfaced with the prototype constructed to carry out the process
    of controlling and monitoring the required parameters. Few tests were conducted
    repetitively to analyse the performance of the system parameters. It was found that
    the controlled set point fixed within the range of pH 7.6-8.4, temperature 25-29.44
    Celsius and water level of 20cm in this research that was effectively achieved in the
    entire test conducted. In addition, the wastewater system accuracy and performance
    is 96.72% and 90.22% respectively.
    Matched MeSH terms: Paper
  18. Noor, N.M., Ahmad, M.H., Othman, N.H.
    MyJurnal
    The importance of the performance of concrete cannot be neglected since it is the early indicator of its physical and mechanical properties. It became more important when material with different physical properties than normal material such as rubber tire was used as concrete constituent. This paper presented apart of research result conducted on mortar and concrete with crumb rubber. Crumb rubber was replaced at 10%, 15% and 20% as sand replacement by volume. In addition, ordinary Portland cement was added to silica fume at 10% and 15% by weight. The properties measured in this study are air content and workability test. As for workability, superplasticizers were constantly used at 1% dosage for all mortar mixture, and 0.5% to 0.7% for concrete mixture. The air content was set at 4% to 6% and mortar flow test was conducted on a steel plate, shocked 15 times in 15 seconds and concrete slump test was carried out using slump cone equipment. Pressure method was used to measure air content. All mixes were done in a controlled room temperature. Results showed that when CR was added in the mixture segregation was observed in mortar requiring a high dose of superplasticizer to be added to improve the workability while air-modifying agent was used to reduce the mortar air content. In concrete mixture, low dosage of superplasticizers was required for workability and air-entrained agent was injected into the mixture to increase the air content between 4%-6%.
    Matched MeSH terms: Paper
  19. Thomas J, Idris NA, Collings DA
    J Microsc, 2017 10;268(1):13-27.
    PMID: 28654160 DOI: 10.1111/jmi.12582
    Pontamine fast scarlet 4B is a red paper and textiles dye that has recently been introduced as a fluorescent probe for plant cell walls. Pontamine exhibits bifluorescence, or fluorescence dependent on the polarization of the excitation light: Because cellulose is aligned within the cell wall, pontamine-labelled cell walls exhibit variable fluorescence as the excitation polarization is modulated. Thus, bifluorescence measurements require polarized excitation that can be directly or indirectly modulated. In our confocal microscopy observations of various cellulose samples labelled with pontamine, we modulated excitation polarization either through sample rotation or by the confocal's scanfield rotation function. This variably rotated laser polarizations on Leica confocal microscopes, but not those from other makers. Beginning with samples with directly observable microfibril orientations, such as purified bacterial cellulose, the velamen of orchid roots and the inner S2 layer of radiata pine compression wood, we demonstrate that modelling the variations in pontamine fluorescence with a sine curve can be used to measure the known microfibril angles. We then measured average local microfibril angles in radiata pine samples, and showed similar microfibril angles in compression and normal (opposite) wood. Significantly, bifluorescence measurements might also be used to understand the degree of local cellulose alignment within the cell wall, as opposed to variations in the overall cellulose angle.
    Matched MeSH terms: Paper
  20. Jamal, K., Kamarulzaman, N.H., Abdullah, A.M., Ismail, M.M., Hashim, M.
    MyJurnal
    Malaysia depends on imports for its fragrant rice, mostly from Thailand, Vietnam, India and Pakistan. The fragrant rice farming in non-granary areas has been included in the new Entry Point Project (EPP) under the National Key Economic Areas (NKEA). In order to realize the aspiration of producing fragrant rice in large areas, it would require full participation and commitment from the existing and new farmers. The objective of this paper is to investigate farmer’s acceptance towards fragrant rice farming in two districts namely Pasir Mas and Tanah Merah, located in the state of Kelantan. The respondents of the study are 23 farmers and in-depth interviews are carried out to obtain farmers’ responses towards fragrant rice farming. The results from the content analysis reveal innovation characteristics, extension services and market pressure are among several factors that explain farmers’ acceptance towards fragrant rice farming.
    Matched MeSH terms: Paper
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links