METHODS: EEP was obtained by maceration with absolute ethanol, then it was concentrated in rotaevaporator up to complete evaporation of the solvent. The crude extract was fractionated with hexane, ethyl acetate, chloroform and methanol and they were subjected to phytochemical screening and total phenolic compounds. Antioxidant activity of EEP and fractions was done by means of the 2,2-diphenyl-1-picryhydrazyl (DPPH) method. Biomarkers of red propolis were identified by LC-Orbitrap-FTMS. To assess cytotoxic activity of the extract, cells were exposed to EEP over 72 h. Cell viability was assessed by means of MTT assay. The percentage of cell growth inhibition (IC50) was analysed by means of non-linear regression, and the absorbance values of the various investigated concentrations were subjected to one-factor analysis of variance (ANOVA) followed by Tukey's or Tamhane's tests (α = 0.05).
RESULTS: The results obtained using phytochemical screening and LC-Orbitrap-FTMS indicated the presence of phlobaphene tannins, catechins, chalcones, aurones, flavonones, flavonols, xanthones, pentacyclic triterpenoids and guttiferones in Brazilian red propolis. EEP and its hexane, chloroform and ethyl acetate fractions obtained by liquid-liquid partitioning exhibited satisfactory antioxidant percentages. EEP (IC50
AIM OF THE REVIEW: The present review aims to compile an up-to-date review of the progress made in the continuous pharmacological and phytochemistry investigation of K. africana and the corresponding commercial and pharmaceutical application of these findings with the ultimate objective of providing a guide for future research on this plant.
METHOD: The scholarly information needed for this paper were predominantly sourced from the electronic search engines such as Google, Google scholar; publishing sites such as Elsevier, scienceDirect, BMC, PubMed; other scientific database sites for chemicals such as ChemSpider, PubChem, and also from online books.
RESULTS: Pharmacological investigations conducted confirm the anti-inflammatory, analgesic, antioxidant and anticancer activity of the extract of different parts of the plant. Bioactive constituents are found to be present in all parts of the plant. So far, approximately 150 compounds have been characterized from different part of the plant. Iridoids, naphthoquinones, flavonoids, terpenes and phenylethanoglycosides are the major class of compounds isolated. Novel compounds with potent antioxidant, antimicrobial and anticancer effect such as verbascoside, verminoside and pinnatal among others, have been identified. Commercial trade of K. africana has boosted in the las few decades. Its effect in the maintenance of skin has been recognized resulting in a handful of skin formulations in the market.
CONCLUSIONS: The pharmaceutical potentials of K. africana has been recognized and have witness a surge in research interest. However, till date, many of its traditional medicinal uses has not been investigated scientifically. Further probing of the existential researches on its pharmacological activity is recommended with the end-goal of unravelling the pharmacodynamics, pharmacokinetics, clinical relevance and possible toxicity and side effects of both the extract and the active ingredients isolated.
METHODS: Phytochemicals, along with their potential antidiabetic property, were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species are also included.
RESULTS: The scrutiny of literature led to the identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert anti-diabetic properties by improving or mimicking insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be potential active compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are obtained from triterpenoids, 13 from flavonoids and 7 from alkaloids. Among all the 44 plant species, the maximum number (7) of compounds were isolated from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds.
CONCLUSION: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish therapeutic drug candidates.
AIM OF THE REVIEW: This review is an attempt to provide scientific information regarding the ethnopharmacology, phytochemistry, pharmacological and toxicological profiles of Gynura species along with the nomenclature, distribution, taxonomy and botanical features of the genus. A critical analysis has been undertaken to understand the current and future pharmaceutical prospects of the genus.
MATERIALS & METHODS: Several electronic databases, including Google scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar, were explored as information sources. The Plant List Index was used for taxonomical authentications. SciFinder and PubChem assisted in the verification of chemical structures.
RESULTS: A large number of phytochemical analyses on Gynura have revealed the presence of around 342 phytoconstituents including pyrrolizidine alkaloids, phenolic compounds, chromanones, phenylpropanoid glycosides, flavonoids, flavonoid glycosides, steroids, steroidal glycosides, cerebrosides, carotenoids, triterpenes, mono- and sesquiterpenes, norisoprenoids, oligosaccharides, polysaccharides and proteins. Several in vitro and in vivo studies have demonstrated the pharmacological potential of Gynura species, including antidiabetic, anti-oxidant, anti-inflammatory, antimicrobial, antihypertensive and anticancer activities. Although the presence of pyrrolizidine alkaloids within a few species has been associated with possible hepatotoxicity, most of the common species have a good safety profile.
CONCLUSIONS: The importance of the genus Gynura both as a prominent contributor in ethnomedicinal systems as well as a source of promising bioactive molecules is evident. Only about one fourth of Gynura species have been studied so far. This review aims to provide some scientific basis for future endeavors, including in-depth biological and chemical investigations into already studied species as well as other lesser known species of Gynura.