Vibrio cholerae O139 isolated from different countries, as well as from different locations within a country, were examined using macrorestriction DNA analysis to determine the clonality of the O139 strains. NotI digests of genomic DNA of representative strains from Nepal, India, Bangladesh, China, Thailand, and Malaysia revealed very similar but not identical patterns. Examinations of the banding patterns generated by pulsed-field gel electrophoresis of strains isolated within countries revealed complete homogeneity. These results further reiterate the spread of an identical clone of V. cholerae O139 although it appears that genetic polymorphism among the O139 strains is becoming apparent.
Vibrio parahaemolyticus was isolated from 47 of 2,699 stools examined primarily for the exclusion of cholera. All strains grew well in alkaline peptone water containing 0.5% NaCl and in Monsur's medium. Serotyping showed them to be of various types. Adults were mainly affected. The importance of looking for V. parahaemolyticus in clinical specimens from cases of diarrhea is emphasized.
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium which is found largely in estuarine and coastal waters. The bacteria has been a main focus in gastro-intestinal infections caused primarily due to the consumption of contaminated seafood. It was shown to survive in magnesium concentrations as high as 300 mM which are toxic to various other micro-organisms. Several genes of V. parahaemolyticus were studied, among which gbpA (N-acetyl glucosamine binding protein) was reported in Vibrio cholerae.
The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species' immune response to this pathogenic bacteria.
This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health.
Foodborne illness is a global burden that impacts a country politically, economically and
socio-economically. The severity of the burden can be unmeasurable as foodborne illness
is often an underestimated problem. In order to enlighten the burden, appropriate food
safety control measures should be taken. This study aimed to optimize a multiplex
Polymerase Chain Reaction (mPCR) detection method to identify foodborne pathogens
simultaneously. Six foodborne pathogens namely, Salmonella spp., Escherichia coli O157,
Vibrio parahaemolyticus, Vibrio cholerae, Listeria monocytogenes and Campylobacter
spp., were targeted in the mPCR detection method. Each mPCR parameter was tested and
the outcome was analysed to obtain a successful mPCR protocol to detect the targeted
foodborne pathogens. The amplified PCR products showed that the optimized mPCR
protocol will be a potential rapid diagnostic tool in foodborne pathogen detection.
Eight seaweed species in Teluk Kemang and three seagrass species in Teluk Pelanduk, Port Dickson, respectively, were screened for antibacterial activities. The antibacterial activities were screened using disc diffusion test, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six aquacultural pathogens strains Aeromonas hydrophila ATCC35654, Vibrio harveyi BB120, Vibrio harveyi ATCC14126, Vibrio alginolyticus ATCC17749, Vibrio parahaemolyticus ATCC17803 and Vibrio anguillarum ATCC43313. The results showed that among all the pathogens, seaweed Padina minor and seagrass Thalassia hemprichii had the strongest antibacterial activity against Vibrio harveyi BB120 and Vibrio harveyi ATCC14126, respectively. The lowest values for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were obtained from Padina minor against V. harveyi BB120 and Thalassia hemprichii against V. harveyi ATCC14126, respectively. The findings suggested that seaweed and seagrass in Port Dickson coastal water have the potential to prevent bacterial diseases particularly in aquaculture.
Some of Vibrio species is well known as pathogenic bacteria in aquaculture and the marine industry. Its infection is able to generate a massive outbreak and affect the fish population, especially for net caged fish such as seabass. This study was conducted to investigate the prevalence of Vibrio spp. isolated from seabass (Lates calcarifer) in Sri Tujuh Lagoon, Tumpat, Kelantan. Then, to determine the antibiotic resistance in Vibrio isolates. Polymerase chain reaction (PCR) was used to detect Vibrio species using specific primer VR169 and VR744 with estimation base pair size band, 597 bp and further identified by sequencing. On the other hand, antibiotic susceptibility tests were continued by using 13 types of antibiotics; kanamycin (K30), chloramphenicol (C30), neomycin (N10), ampicillin (AMP10), nitrofurantoin (F300), tetracycline (TE30), streptomycin (S10), norfloxacin (NOR10), ciprofloxacin (CIP5), nalidixic acid (NA30), gentamicin (CN10), doxycycline (DO30) and sulfamethoxazole (SXT100). As a result, 14 Vibrio isolates were identified, including Vibrio fluvialis (n=6), Vibrio parahaemolyticus (n=3), Vibrio harveyi (n=2) and each isolate for Vibrio vulnificus, Vibrio alginolyticus and Vibrio spp. The results showed that all isolates were sensitive to most antibiotics except ampicillin, neomycin and streptomycin. The MAR index value was ranging from 0 to 0.31. This study demonstrates the prevalence of Vibrio spp. in seabass and the report on multidrug resistance strains that could be of concern to the fish farmers. In addition, data from this study can be further used in fish disease management plans.
Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
Shrimp aquaculture contributes significantly to global economic growth, and the whiteleg shrimp, Penaeus vannamei, is a leading species in this industry. However, Vibrio parahaemolyticus infection poses a major challenge in ensuring the success of P. vannamei aquaculture. Despite its significance in this industry, the biological knowledge of its pathogenesis remains unclear. Hence, this study was conducted to identify the interaction sites and binding affinity between several immune-related proteins of P. vannamei with V. parahaemolyticus proteins associated with virulence factors. Potential interaction sites and the binding affinity between host and pathogen proteins were identified using molecular docking and dynamics (MD) simulation. The P. vannamei-V. parahaemolyticus protein-protein interaction of Complex 1 (Ferritin-HrpE/YscL family type III secretion apparatus protein), Complex 2 (Protein kinase domain-containing protein-Chemotaxis CheY protein), and Complex 3 (GPCR-Chemotaxis CheY protein) was found to interact with -4319.76, -5271.39, and -4725.57 of the docked score and the formation of intermolecular bonds at several interacting residues. The docked scores of Complex 1, Complex 2, and Complex 3 were validated using MD simulation analysis, which revealed these complexes greatly contribute to the interactions between P. vannamei and V. parahaemolyticus proteins, with binding free energies of -22.50 kJ/mol, -30.20 kJ/mol, and -26.27 kJ/mol, respectively. This finding illustrates the capability of computational approaches to search for molecular binding sites between host and pathogen, which could increase the knowledge of Vibrio spp. infection on shrimps, which then can be used to assist in the development of effective treatment.
Quorum sensing (QS), acts as one of the gene regulatory systems that allow bacteria to regulate their physiological activities by sensing the population density with synchronization of the signaling molecules that they produce. Here, we report a marine isolate, namely strain T47, and its unique AHL profile. Strain T47 was identified using 16S rRNA sequence analysis confirming that it is a member of Vibrio closely clustered to Vibrio sinaloensis. The isolated V. sinaloensis strain T47 was confirmed to produce N-butanoyl-L-homoserine lactone (C4-HSL) by using high resolution liquid chromatography tandem mass spectrometry. V. sinaloensis strain T47 also formed biofilms and its biofilm formation could be affected by anti-QS compound (cathechin) suggesting this is a QS-regulated trait in V. sinaloensis strain T47. To our knowledge, this is the first documentation of AHL and biofilm production in V. sinaloensis strain T47.
N-acylhomoserine lactones (AHL) plays roles as signal molecules in quorum sensing (QS) in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL production using Chromobacterium violaceum CV026 as the AHL biosensor. Strain T33 was isolated based on preliminary AHL screening and further identified by using 16S rDNA sequence analysis as a member of the genus Vibrio closely related to Vibrio brasiliensis. The isolated Vibrio sp. strain T33 was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10 HSL) through high resolution tandem mass spectrometry analysis. We demonstrated that this isolate formed biofilms which could be inhibited by catechin. To the best of our knowledge, this is the first report that documents the production of these AHLs by Vibrio brasiliensis strain T33.
The genetic diversity or clonality among Vibrio cholerae O1, O139 and non-O1/ non-O139 of clinical and environmental origin using ribotyping and PFGE was performed in order to ascertain the public health implications of the different genotypes circulating within the Malaysian environment. Using an in-house typing scheme, of the 214 strains included, 202 strains were isolated locally between 1992 and 1998, seven were obtained from Bangladesh and five were reference strains. Amongst the 176 El Tor O1 strains, 152 clinical strains demonstrated five ribotypes--E1a, E1b, E2a, E3 and E1c. E1b was the most predominant ribotype demonstrated by 84% of the El Tor O1 strains and was present in all years demonstrating that this strain was intrinsic to Malaysia. PFGE analysis of these strains demonstrated minimal variation amongst the 15 PFGE profiles obtained. Ribotpye E2a amongst five clinical and two environmental O1 strains, were from one location and had previously been reported in Indonesia and the Philippines, thus demonstrating strong evidence that these strains may have been imported into Malaysia. Among Vibrio cholerae O139 strains, 91.7% were of ribotype A1a similar to the original O139, while two others were of ribotype A1b and one of A1e, corresponding to ribotypes 1, 2 and 3 of Dalsgaard and colleagues' scheme for O139 strains. PFGE analysis demonstrated that 89% of ribotype A1a could be differentiated into three PFGE genotypes which were very closely related. The eight non-O1/non-O139 serogroup strains were heterogeneous in both ribotype and PFGE patterns.
A total of 11 Vibrio cholerae isolates from 1996-1998 outbreaks in Malaysia and 4 V. alginolyticus were analyzed. Isolates were characterized by polymerase chain reaction (PCR) and Southern hybridization for the presence of the gene encoding zonula occludens toxin (zot). Screening of zot gene by PCR revealed the presence of this gene in V. cholerae and V. alginolyticus. The zot gene from one V. cholerae Ogawa isolate that was cloned in a pCR 2.1 TOPO vector was sequenced. The sequences obtained were 99% homologous to the zot gene sequence from the Gene Bank.
Bacterial resistance to various antimicrobial agents is common in area with high usage of antibiotics. In this study, the data on antimicrobial susceptibility patterns of Vibrio cholerae O1 from patients during an outbreak period was found to be high but variable rates of multidrug resistance. Thirty-two of 33 V. cholerae isolates harboured the tcp, ctx, zot and ace genes, suggesting their possible roles in the outbreak cases. We analyzed the molecular diversity of a total of 33 strains of V. cholerae O1 isolated from 33 patients between November 1997 and April 1998 using random amplified polymorphic DNA (RAPD) analysis. The 30 typable isolates could be separated into four major clusters containing 5, 17, 2 and 6 isolates, respectively. However, no particular RAPD pattern was predictive of a particular pattern of antibiotic susceptibility. The findings of this study showed that multiple clones seemed to be responsible for cases in the outbreaks in the study area.
Forty clinical isolates of Vibrio parahaemolyticus were studied for the production of the thermostable direct hemolysin (TDH), and the TDH-related hemolysin (TRH) including the respective encoding genes, tdh and trh. The presence of TDH and its encoding genes were found amongst 95% of the strains, whereas the TRH was absent amongst these isolates. Thirty-two isolates were found to be plasmid-free, whereas eight isolates possessed plasmids with sizes ranging from 2.4 > or = 23 kb. Using a DNA probe coding for the homologous region of the tdh and trh, it was found that the tdh genes were present on the chromosomal DNA.
The emergence of the aluminium recycling industry has led to an increase in aluminium-containing wastewater discharge to the environment. Biological treatment of metal is one of the solutions that can be provided as green technology. Screening tests showed that Brochothrix thermosphacta and Vibrio alginolyticus have the potential to remove aluminium from wastewater. Brochothrix thermosphacta removed up to 49.60%, while Vibrio alginolyticus was capable of removing up to 59.72% of 100 mg/L aluminium in acidic conditions. The removal of aluminium by V. alginolyticus was well fitted with pseudo-first-order kinetics (k1 = 0.01796/min), while B. thermosphacta showed pseudo-second-order kinetics (k2 = 0.125612 mg substrate/g adsorbent. hr) in the process of aluminium removal. V. alginolyticus had a higher rate constant under acidic conditions, while B. thermosphacta had a higher rate constant under neutral pH conditions.
Acute hepatopancreatic necrosis disease (AHPND) or formerly known as early mortality syndrome (EMS) is an emerging disease that has caused significant economic losses to the aquaculture industry. The primary causative agent of AHPND is Vibrio parahaemolyticus, a Gram-negative rod-shaped bacterium that has gained plasmids encoding the fatal binary toxins Pir A/Pir B that cause rapid death of the infected shrimp. In this review, the current research studies and information about AHPND in shrimps have been presented. Molecular diagnostic tools and potential treatments regarding AHPND were also included. This review also includes relevant findings which may serve as guidelines that can help for further investigation and studies on AHPND or other shrimp diseases.