METHODS: Diabetes was induced using streptozotocin (60 mg/kg, i.v.) followed by nicotinamide (210 mg/kg, intraperitoneal (i.p.)). MAD (50 mg/kg) was administered orally for 4 weeks, commencing 15 days after induction of diabetes; resveratrol (10 mg/kg) was used as a positive control. Fasting blood glucose, plasma insulin, HbA1c, liver and lipid parameters were measured, along with antioxidant enzymes and malondialdehyde as an index of lipid peroxidation; histological and immunohistochemical studies were also undertaken.
KEY FINDINGS: MAD normalized the elevated fasting blood glucose levels. This was associated with increased plasma insulin concentrations. MAD alleviated oxidative stress by improving enzymatic antioxidants and reducing lipid peroxidation. Histopathological examination showed significant recovery of islet structural degeneration and an increased area of islets. Immunohistochemical staining showed increased insulin content in islets of MAD-treated rats.
CONCLUSIONS: The results demonstrate an antidiabetic effect of MAD associated with preservation of β-cell structure and function.
METHODS AND STUDY DESIGN: A randomized controlled intervention study was carried out to determine the impact of self-efficacy education based on the Health Belief Model (HBM) in 240 patients with type 2 diabetes at the Golestan Hospital, Ahvaz, Iran between October 2014 and August 2015. The education duration was three months followed by a 24-week follow-up visit to determine the progress of the subjects. In this study, reliable and validated diabetes educational booklet and questionnaires based on knowledge, health beliefs and quality of life were used. The participants were randomly allocated to either the intervention group (n=120) or to the conventional dietary counseling group as controls (n=120), and assessed at the baseline, week 12 and week 36. The study was divided into primary outcome measurements consisting of glycated hemoglobin A1c (HbA1c), fasting blood glucose, lipid profile, and anthropometric levels. Secondary outcome measures were related to nutrition knowledge, health beliefs and quality of life.
RESULTS: The results showed that subjects in the intervention group had significantly better metabolic and glycemic profiles compared with those in the control group. It also showed that knowledge, health belief and quality of life significantly increased in the intervention group.
CONCLUSIONS: Findings indicate that through tailored self-efficacy education, the quality of life and metabolic profile of diabetes patients can be improved.
METHODS: We used data from 1108 population-representative studies with 141 million participants aged 18 years and older with measurements of fasting glucose and glycated haemoglobin (HbA1c), and information on diabetes treatment. We defined diabetes as having a fasting plasma glucose (FPG) of 7·0 mmol/L or higher, having an HbA1c of 6·5% or higher, or taking medication for diabetes. We defined diabetes treatment as the proportion of people with diabetes who were taking medication for diabetes. We analysed the data in a Bayesian hierarchical meta-regression model to estimate diabetes prevalence and treatment.
FINDINGS: In 2022, an estimated 828 million (95% credible interval [CrI] 757-908) adults (those aged 18 years and older) had diabetes, an increase of 630 million (554-713) from 1990. From 1990 to 2022, the age-standardised prevalence of diabetes increased in 131 countries for women and in 155 countries for men with a posterior probability of more than 0·80. The largest increases were in low-income and middle-income countries in southeast Asia (eg, Malaysia), south Asia (eg, Pakistan), the Middle East and north Africa (eg, Egypt), and Latin America and the Caribbean (eg, Jamaica, Trinidad and Tobago, and Costa Rica). Age-standardised prevalence neither increased nor decreased with a posterior probability of more than 0·80 in some countries in western and central Europe, sub-Saharan Africa, east Asia and the Pacific, Canada, and some Pacific island nations where prevalence was already high in 1990; it decreased with a posterior probability of more than 0·80 in women in Japan, Spain, and France, and in men in Nauru. The lowest prevalence in the world in 2022 was in western Europe and east Africa for both sexes, and in Japan and Canada for women, and the highest prevalence in the world in 2022 was in countries in Polynesia and Micronesia, some countries in the Caribbean and the Middle East and north Africa, as well as Pakistan and Malaysia. In 2022, 445 million (95% CrI 401-496) adults aged 30 years or older with diabetes did not receive treatment (59% of adults aged 30 years or older with diabetes), 3·5 times the number in 1990. From 1990 to 2022, diabetes treatment coverage increased in 118 countries for women and 98 countries for men with a posterior probability of more than 0·80. The largest improvement in treatment coverage was in some countries from central and western Europe and Latin America (Mexico, Colombia, Chile, and Costa Rica), Canada, South Korea, Russia, Seychelles, and Jordan. There was no increase in treatment coverage in most countries in sub-Saharan Africa; the Caribbean; Pacific island nations; and south, southeast, and central Asia. In 2022, age-standardised treatment coverage was lowest in countries in sub-Saharan Africa and south Asia, and treatment coverage was less than 10% in some African countries. Treatment coverage was 55% or higher in South Korea, many high-income western countries, and some countries in central and eastern Europe (eg, Poland, Czechia, and Russia), Latin America (eg, Costa Rica, Chile, and Mexico), and the Middle East and north Africa (eg, Jordan, Qatar, and Kuwait).
INTERPRETATION: In most countries, especially in low-income and middle-income countries, diabetes treatment has not increased at all or has not increased sufficiently in comparison with the rise in prevalence. The burden of diabetes and untreated diabetes is increasingly borne by low-income and middle-income countries. The expansion of health insurance and primary health care should be accompanied with diabetes programmes that realign and resource health services to enhance the early detection and effective treatment of diabetes.
FUNDING: UK Medical Research Council, UK Research and Innovation (Research England), and US Centers for Disease Control and Prevention.
Methodology: The medical records of 84 obese children under 18 years of age seen at Paediatric clinic HUSM from 2006 to 2015 were reviewed. Demographic (age, gender, ethnicity), anthropometric (weight and height), clinical [body mass index (BMI), systolic blood pressure (SBP) and diastolic blood pressure (DBP)] and biochemical [serum total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), fasting plasma glucose (FPG)] parameters were recorded, analyzed and compared.
Results: Majority of subjects in both age groups were boys, with 68.2% <10 years old. Mean age was 9.69 years (±3.36). The clinical and biochemical parameters of metabolic syndrome were similar between those <10 years old and >10 years, with the exception of BMI, waist circumference, SBP and TG level. Multivariate regression analysis showed that the parameters of metabolic syndrome significantly associated with age ≥10 years were systolic hypertension (adjusted OR 7.17, 95% CI, 1.48 to 34.8) and BMI >30 kg/m2 (adjusted OR 3.02, 95% CI, 1.16 to 7.86).
Conclusion: There were similar clinical and biochemical parameters of metabolic syndrome in both age groups. The proportions of children with metabolic syndrome were similar regardless of age group. The overall prevalence rate of metabolic syndrome was 27.3%. In view of the alarming presence of components of metabolic syndrome even in children less than 10 years of age, efforts aimed at the prevention of childhood obesity in the community should be intensified.
Methods: We searched seven databases up to July 2020 for randomized controlled trials investigating the effectiveness of telemedicine in the delivery of diabetes care in low- and middle-income countries. We extracted data on the study characteristics, primary end-points and effect sizes of outcomes. Using random effects analyses, we ran a series of meta-analyses for both biochemical outcomes and related patient properties.
Findings: We included 31 interventions in our meta-analysis. We observed significant standardized mean differences of -0.38 for glycated haemoglobin (95% confidence interval, CI: -0.52 to -0.23; I2 = 86.70%), -0.20 for fasting blood sugar (95% CI: -0.32 to -0.08; I2 = 64.28%), 0.81 for adherence to treatment (95% CI: 0.19 to 1.42; I2 = 93.75%), 0.55 for diabetes knowledge (95% CI: -0.10 to 1.20; I2 = 92.65%) and 1.68 for self-efficacy (95% CI: 1.06 to 2.30; I2 = 97.15%). We observed no significant treatment effects for other outcomes, with standardized mean differences of -0.04 for body mass index (95% CI: -0.13 to 0.05; I2 = 35.94%), -0.06 for total cholesterol (95% CI: -0.16 to 0.04; I2 = 59.93%) and -0.02 for triglycerides (95% CI: -0.12 to 0.09; I2 = 0%). Interventions via telephone and short message service yielded the highest treatment effects compared with services based on telemetry and smartphone applications.
Conclusion: Although we determined that telemedicine is effective in improving several diabetes-related outcomes, the certainty of evidence was very low due to substantial heterogeneity and risk of bias.
METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.
RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.
CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.
METHODS: In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day(-1) oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation.
RESULTS: Oligofructose increased breath hydrogen (P