Displaying publications 661 - 680 of 1094 in total

Abstract:
Sort:
  1. JadKarim L, Wickersham J, Gautam K, Azwa I, Saifi R, Khati A, et al.
    PLoS One, 2023;18(11):e0294937.
    PMID: 38032958 DOI: 10.1371/journal.pone.0294937
    INTRODUCTION: HIV testing uptake remains very low among men who have sex with men (MSM) in Malaysia, a subgroup still bearing a disproportionate HIV burden. Therefore, we sought to identify and measure factors associated with never-testing for HIV among Malaysian MSM to further characterize this subgroup and inform future public health interventions addressing low testing rates in the country.

    METHODS: We conducted a cross-sectional online survey among Malaysian MSM (August to September 2021). Participants completed questionnaires, including socio-demographic characteristics, HIV/STI testing practices, drug- and sex-related behaviors, and knowledge and attitudes toward HIV prevention services. Out of 1,799 completed surveys, 870 were included in the analysis after eliminating duplicates and incomplete surveys. We used logistic regression to determine factors associated with never-testing for HIV.

    RESULTS: Overall, one-third of the study participants (33.8%) reported having never tested for HIV. Of those who reported to have tested for HIV (n = 576), half reported that they had tested for HIV in the past 6 months (50.3%). In multivariable logistic regression, MSM with HIV sero-concordant partner (aOR = 3.44, 95% CI = 1.56-7.60), without a prior diagnosis of a sexually transmitted infection (aOR = 2.83, 95% CI = 1.46-5.49), unaware of pre-exposure prophylaxis (PrEP; aOR = 2.71, 95% CI = 1.74-4.21), unaware of someone taking PrEP (aOR = 1.64, 95% CI = 1.15-2.35), and unwilling to use PrEP (aOR = 2.48, 95% CI = 1.43-4.30) had higher odds of never been tested for HIV. In contrast, MSM who were older (aOR = 0.95, 95% CI = 0.93-0.97) and of the Malaya ethnic group (aOR = 0.59, 95% CI = 0.37-0.95) had lower odds of never testing for HIV.

    CONCLUSION: Our findings shed light on the characteristics of HIV never-testers among MSM in Malaysia. The results indicate the need for innovative strategies to increase the uptake of HIV testing services among members of the MSM community.

  2. Garg P, Pundir S, Ali A, Panja S, Chellappan DK, Dua K, et al.
    PMID: 38055069 DOI: 10.1007/s00210-023-02862-2
    Moringa oleifera Lam. is a pan-tropical plant well known to the ancient world for its extensive therapeutic benefits in the Ayurvedic and Unani medical systems. The ancient world was familiar with this tree, but it has only lately been rediscovered as a multifunctional species with a huge range of possible therapeutic applications. It is a folk remedy for skin diseases, edema, sore gums, etc. This review comprises the history, ethnomedicinal applications, botanical characteristics, geographic distribution, propagation, nutritional and phytochemical profile, dermatological effects, and commercially available cosmeceuticals of Moringa oleifera Lam.Compilation of all the presented data has been done by employing various search engines like Science Direct, Google, PubMed, Research Gate, EBSCO, SciVal, SCOPUS, and Google Scholar.Studies on phytochemistry claim the presence of a variety of substances, including fatty acids, phenolic acids, sterols, oxalates, tocopherols, carotenoids, flavonoids, flavonols glycosides, tannins, terpenoids, terpene, saponins, phylates, alkaloids, glucosinolates, glycosides, and isothiocyanate. The pharmacological studies have shown the efficacy of Moringa oleifera Lam. as an antibacterial, antifungal, anti-inflammatory, antioxidant, anti-atopic dermatitis, antipsoriatic, promoter of wound healing, effective in treating herpes simplex virus, photoprotective, and UV protective. As a moisturizer, conditioner, hair growth promoter, cleanser, antiwrinkle, anti-aging, anti-acne, scar removal, pigmentation, and control for skin infection, sores, as well as sweating, it has also been utilized in a range of cosmeceuticals.he Moringa oleifera Lam. due to its broad range of phytochemicals can be proven boon for the treatment of dermatological disorders.
  3. Hossain MK, Hendi A, Asim N, Alghoul MA, Rafiqul Islam M, Hussain SMS
    Chem Asian J, 2024 Aug 19;19(16):e202300529.
    PMID: 37695946 DOI: 10.1002/asia.202300529
    Chemiresistive sensing lies in its ability to provide fast, accurate, and reliable detection of various gases in a cost-effective and non-invasive manner. In this context, graphene-functionalized metal oxides play crucial role in hydrogen gas sensing. However, a cost-effective, defect-free, and large production schemes of graphene-based sensors are required for industrial applications. This review focuses on graphene-functionalized metal oxide nanostructures designed for gaseous molecules detection, mainly hydrogen gas sensing applications. For the convenience of the reader and to understand the role of graphene-metal oxide hybrids (GMOH) in gas sensing activities, a brief overview of the properties and synthesis routes of graphene and GMOH have been reported in this paper. Metal oxides play an essential role in the GMOH construct for hydrogen gas sensing. Therefore, various metal oxides-decorated GMOH constructs are detailed in this review as gas sensing platforms, particularly for hydrogen detection. Finally, specific directions for future research works and challenges ahead in designing highly selective and sensitive hydrogen gas sensors have been highlighted. As illustrated in this review, understanding of the metal oxides-decorated GMOH constructs is expected to guide ones in developing emerging hybrid nanomaterials that are suitable for hydrogen gas sensing applications.
  4. Malyla V, De Rubis G, Paudel KR, Chellappan DK, Hansbro NG, Hansbro PM, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Dec;396(12):3595-3603.
    PMID: 37266589 DOI: 10.1007/s00210-023-02553-y
    Lung cancer (LC) is the leading cause of cancer-related deaths globally. It accounts for more than 1.9 million cases each year due to its complex and poorly understood molecular mechanisms that result in unregulated cell proliferation and metastasis. β-Catenin is a developmentally active protein that controls cell proliferation, metastasis, polarity and cell fate during homeostasis and aids in cancer progression via epithelial-mesenchymal transition. Therefore, inhibition of the β-catenin pathway could attenuate the progression of LC. Berberine, an isoquinoline alkaloid which is known for its anti-cancer and anti-inflammatory properties, demonstrates poor solubility and bioavailability. In our study, we have encapsulated berberine into liquid crystalline nanoparticles to improve its physiochemical functions and studied if these nanoparticles target the β-catenin pathway to inhibit the human lung adenocarcinoma cell line (A549) at both gene and protein levels. We observed for the first time that berberine liquid crystalline nanoparticles at 5 µM significantly attenuate the expression of the β-catenin gene and protein. The interaction between berberine and β-catenin was further validated by molecular simulation studies. Targeting β-catenin with berberine nanoparticles represents a promising strategy for the management of lung cancer progression.
  5. K A, Sharma A, Kumar D, Singh SK, Gupta G, Chellappan DK, et al.
    J Med Virol, 2022 Oct;94(10):4628-4643.
    PMID: 35705439 DOI: 10.1002/jmv.27936
    The global pandemic of COVID-19 began in December 2019 and is still continuing. The past 2 years have seen the emergence of several variants that were more vicious than each other. The emergence of Omicron (B.1.1.529) proved to be a huge epidemiological concern as the rate of infection of this particular strain was enormous. The strain was identified in South Africa on November 24, 2021 and was classified as a "Variant of Concern" on November 26, 2021. The Omicron variant possessed mutations in the key RBD region, the S region, thereby increasing the affinity of ACE2 for better transmission of the virus. Antibody resistance was found in this variant and it was able to reduce vaccine efficiency of vaccines. The need for a booster vaccine was brought forth due to the prevalence of the Omicron variant and, subsequently, this led to targeted research and development of variant-specific vaccines and booster dosage. This review discusses broadly the genomic characters and features of Omicron along with its specific mutations, evolution, antibody resistance, and evasion, utilization of CRISPR-Cas12a assay for Omicron detection, T-cell immunity elicited by vaccines against Omicron, and strategies to decrease Omicron infection along with COVID-19 and it also discusses on XE recombinant variant and on infectivity of BA.2 subvariant of Omicron.
  6. Samsuddin N, Razali A, Rahman NAA, Yusof MZ, Mahmood NAKN, Hair AFA
    Malays J Med Sci, 2019 Mar;26(2):131-137.
    PMID: 31447616 MyJurnal DOI: 10.21315/mjms2019.26.2.14
    The objectives of occupational health services (OHS) are to create a healthy and safe working environment, prevent work-related diseases, optimise employees' functional capacity and promote health. According to the literature, global accessibility to OHS has not shown much improvement and even worsened in certain countries. The main challenges come from the small and medium enterprises (SMEs). To respond to these global challenges, the basic occupational health services (BOHS) guideline was published under the purview of the World Health Organization and the International Labour Organization. The guideline describes BOHS as part of the infrastructure called the occupational safety and health system, an essential element that ensures the high service coverage and sustainability of the programme. The BOHS guideline was introduced in Malaysia by the Department of Occupational Safety and Health with a focus on SMEs, but its accessibility is low. A gap analysis was conducted between the current BOHS in Malaysia and the published international guideline. The important challenges identified that contributes to the low BOHS accessibility in Malaysia is the weakness in the BOHS infrastructure and OHS system provision. The proposed BOHS infrastructure model is meant to increase accessibility and to provide fair and equitable health services for Malaysians.
  7. Hossain MAM, Uddin SMK, Hashem A, Mamun MA, Sagadevan S, Johan MR
    Malays J Med Sci, 2022 Dec;29(6):15-33.
    PMID: 36818907 DOI: 10.21315/mjms2022.29.6.3
    Diagnostic testing to identify individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in selecting appropriate treatments, saving people's lives and preventing the global pandemic of COVID-19. By testing on a massive scale, some countries could successfully contain the disease spread. Since early viral detection may provide the best approach to curb the disease outbreak, the rapid and reliable detection of coronavirus (CoV) is therefore becoming increasingly important. Nucleic acid detection methods, especially real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays are considered the gold standard for COVID-19 diagnostics. Some non-PCR-based molecular methods without thermocycler operation, such as isothermal nucleic acid amplification have been proved promising. Serologic immunoassays are also available. A variety of novel and improved methods based on biosensors, Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, lateral flow assay (LFA), microarray, aptamer etc. have also been developed. Several integrated, random-access, point-of-care (POC) molecular devices are rapidly emerging for quick and accurate detection of SARS-CoV-2 that can be used in the local hospitals and clinics. This review intends to summarize the currently available detection approaches of SARS-CoV-2, highlight gaps in existing diagnostic capacity, and propose potential solutions and thus may assist clinicians and researchers develop better technologies for rapid and authentic diagnosis of CoV infection.
  8. Yu L, Abd Ghani MK, Aghemo A, Barh D, Bassetti M, Catena F, et al.
    Curr Med Chem, 2023;30(39):4390-4408.
    PMID: 36998130 DOI: 10.2174/0929867330666230330092725
    The COVID-19 pandemic, caused by the coronavirus, SARS-CoV-2, has claimed millions of lives worldwide in the past two years. Fatalities among the elderly with underlying cardiovascular disease, lung disease, and diabetes have particularly been high. A bibliometrics analysis on author's keywords was carried out, and searched for possible links between various coronavirus studies over the past 50 years, and integrated them. We found keywords like immune system, immunity, nutrition, malnutrition, micronutrients, exercise, inflammation, and hyperinflammation were highly related to each other. Based on these findings, we hypothesized that the human immune system is a multilevel super complex system, which employs multiple strategies to contain microorganism infections and restore homeostasis. It was also found that the behavior of the immune system is not able to be described by a single immunological theory. However, one main strategy is "self-destroy and rebuild", which consists of a series of inflammatory responses: 1) active self-destruction of damaged/dysfunctional somatic cells; 2) removal of debris and cells; 3) rebuilding tissues. Thus, invading microorganisms' clearance could be only a passive bystander response to this destroy-rebuild process. Microbial infections could be self-limiting and promoted as an indispensable essential nutrition for the vast number of genes existing in the microorganisms. The transient nutrition surge resulting from the degradation of the self-destroyed cell debris coupled with the existing nutrition state in the patient may play an important role in the pathogenesis of COVID-19. Finally, a few possible coping strategies to mitigate COVID-19, including vaccination, are discussed.
  9. Mdpaiman N, Md Ali SA, Mdzin R, Meor Kamal MZ, Md Amin WA, Nallusamy M, et al.
    PLoS One, 2014;9(2):e89172.
    PMID: 24586570 DOI: 10.1371/journal.pone.0089172
    Breast cancer estrogen receptor (ER) status is one of the strong additional factors in predicting response of patients towards hormonal treatment. The main aim of this study was to assess the morphological characteristics and proliferative activity using MIB-1(Ki-67) of estrogen receptor negative invasive breast ductal carcinoma (NOS type) as well as to correlate these features with clinicopathological data. We also aim to study the expression of c-erbB2 in ER negative breast tumors. High proliferative rate (MIB-1 above 20%) was observed in 63 (63.6%) of 99 ER negative tumors and that these tumors were associated with high expression of c-erbB2 (57.6%). We observed that MIB-1 is a reliable independent prognostic indicator for ER negative infiltrating ductal carcinoma in this study.
  10. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
  11. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

  12. Abd Manan TSB, Beddu S, Khan T, Wan Mohtar WHM, Sarwono A, Jusoh H, et al.
    MethodsX, 2019;6:1701-1705.
    PMID: 31388505 DOI: 10.1016/j.mex.2019.07.011
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of two or more fused benzene rings and abundantly found in mixed-use areas. Mixed-use areas consist of dense population, urbanization, industrial and agricultural activities. River pollution are common in mixed-use areas and 98% of Malaysia's fresh water supply originates from surface water. The biological degradation, adsorption and advanced oxidation process were documented as the available PAHs treatment for water. To date, the application of the photo-Fenton oxidation process has been reported for the treatment of PAHs from contaminated soil (review paper), landfill leachate, municipal solid waste leachate, sanitary landfill leachate, aniline wastewater, ammunition wastewater and saline aqueous solutions. As for potable water, the application of Fenton reagent was aided with photo treatment or electrolysis not focusing on PAHs removal. •The presented MethodsX was conducted for PAHs degradation analysis in potable water samples using photo-Fenton oxidation process.•The designed reactor for batch experiment is presented.•The batch experiment consists of parameters like concentration of 17 USEPA-PAHs in the prepared aqueous solution (fixed variable), reaction time, pH and molarity ratio of hydrogen peroxide (H2O2): ferrous sulfate (FeSO4).
  13. Jusoh H, Sabariah Binti Abd Manan T, Beddu S, Osman SBS, Jusoh MNH, Mohtar WHMW, et al.
    Data Brief, 2020 Aug;31:105868.
    PMID: 32637485 DOI: 10.1016/j.dib.2020.105868
    Soil requires load bearing impact assessment for stability. Therefore, this study aims to utilize the multi-channel analysis surface wave (MASW) for soil subsurface investigation and profiling around Peninsular Malaysia. The standard penetration test (SPT) was conducted for comparison between factual N-value and computed N-value from shear wave velocity (Vs ) obtained from MASW using the Imai and Tonouchi equation. The correlation coefficient (R) and coefficient of determination, (R2 ), showed strong relationship between factual N-value and computed N-value. The model of Vs and factual N-value data distribution is non-normal but the analyzed relationship shows a significant level of p-value < 0.05. The R2 for each location of Vs -N-value relationship are ranging from 0.5 to 0.9.
  14. Abd Manan TSB, Khan T, Sivapalan S, Jusoh H, Sapari N, Sarwono A, et al.
    Sci Total Environ, 2019 May 15;665:196-212.
    PMID: 30772550 DOI: 10.1016/j.scitotenv.2019.02.060
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of benzene rings. The objective of this research was to identify the optimum condition for the degradation of PAHs contaminated water using photo-Fenton oxidation process via response surface methodology (RSM). Aqueous solution was prepared and potable water samples were collected from water treatment plants in Perak Tengah, Perak, Malaysia in September 2016. The reaction time, pH, molarity of H2O2 and FeSO4 were analyzed followed by RSM using aqueous solution. A five level central composite design with quadratic model was used to evaluate the effects and interactions of these parameters. The response variable was the percentage of total organic carbon (TOC) removal. PAHs quantification was done using gas chromatography mass spectrometry analysis. The regression line fitted well with the data with R2 value of 0.9757. The lack of fit test gives the highest value of Sum of Squares (15,666.64) with probability F value 0.0001 showing significant quadratic model. The optimum conditions were established corresponding to the percentage of TOC removal. The PAHs removal efficiency for potable water samples ranged from 76.4% to 91% following the first order of kinetic rates with R2 values of >0.95. Conventional water treatment techniques are not effective for PAHs removal. Thus, advanced oxidation processes may be considered as an alternative to conventional water treatment techniques in Malaysia and other developing countries.
  15. Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, et al.
    Materials (Basel), 2021 Apr 14;14(8).
    PMID: 33919814 DOI: 10.3390/ma14081960
    Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.
  16. Ahmad W, Khan MA, Ashraf K, Ahmad A, Daud Ali M, Ansari MN, et al.
    Front Pharmacol, 2021;12:597990.
    PMID: 33935697 DOI: 10.3389/fphar.2021.597990
    Safoof-e-Pathar phori (SPP) is an Unani poly-herbomineral formulation, which has for a long time been used as a medicine due to its antiurolithiatic activity, as per the Unani Pharmacopoeia. This powder formulation is prepared using six different plant/mineral constituents. In this study, we explored the antiurolithiatic and antioxidant potentials of SPP (at 700 and 1,000 mg/kg) in albino Wistar rats with urolithiasis induced by 0.75% ethylene glycol (EG) and 1% ammonium chloride (AC). Long-term oral toxicity studies were performed according to the Organization for Economic Co-operation and Development (OECD) guidelines for 90 days at an oral dose of 700 mg/kg of SPP. The EG urolithiatic toxicant group had significantly higher levels of urinary calcium, serum creatinine, blood urea, and tissue lipid peroxidation and significantly (p < 0.001 vs control) lower levels of urinary sodium and potassium than the normal control group. Histopathological examination revealed the presence of refractile crystals in the tubular epithelial cell and damage to proximal tubular epithelium in the toxicant group but not in the SPP treatment groups. Treatment of SPP at 700 and 1,000 mg/kg significantly (p < 0.001 vs toxicant) lowered urinary calcium, serum creatinine, blood urea, and lipid peroxidation in urolithiatic rats, 21 days after induction of urolithiasis compared to the toxicant group. A long-term oral toxicity study revealed the normal growth of animals without any significant change in hematological, hepatic, and renal parameters; there was no evidence of abnormal histology of the heart, kidney, liver, spleen, or stomach tissues. These results suggest the usefulness of SPP as an antiurolithiatic and an antioxidant agent, and long-term daily oral consumption of SPP was found to be safe in albino Wistar rats for up to 3 months. Thus, SPP may be safe for clinical use as an antiurolithiatic formulation.
  17. Beddu S, Abd Manan TSB, Zainoodin MM, Khan T, Wan Mohtar WHM, Nurika O, et al.
    Data Brief, 2020 Aug;31:105843.
    PMID: 32596432 DOI: 10.1016/j.dib.2020.105843
    Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.
  18. Ashhar Z, Yusof NA, Ahmad Saad FF, Mohd Nor SM, Mohammad F, Bahrin Wan Kamal WH, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526838 DOI: 10.3390/molecules25112668
    Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.
  19. Zainol Abidin MN, Goh PS, Said N, Ismail AF, Othman MHD, Hasbullah H, et al.
    ACS Appl Mater Interfaces, 2020 Jul 22;12(29):33276-33287.
    PMID: 32589391 DOI: 10.1021/acsami.0c08947
    The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links