Methods: This comparative cross-sectional study was conducted among healthy women. The cases included those women exposed to SHS, and the controls included those women not exposed to SHS. SHS exposure was defined as being exposed to SHS for at least 15 min for 2 days per week. Venous blood was taken to measure the metabolic markers (high molecular weight adiponectin, insulin level, insulin resistance, and nonesterified fatty acids), oxidative stress markers (oxidized low density lipoprotein cholesterol and 8-isoprostane), and inflammatory markers (high-sensitivity C-reactive protein and interleukin-6). A hair nicotine analysis was also performed. An analysis of covariance and a simple linear regression analysis were conducted.
Results: There were 101 women in the SHS exposure group and 91 women in the non-SHS exposure group. The mean (with standard deviation) of the hair nicotine levels was significantly higher in the SHS exposure group when compared to the non-SHS exposure group [0.22 (0.62) vs. 0.04 (0.11) ng/mg; P = 0.009]. No significant differences were observed in the high molecular weight adiponectin, insulin and insulin resistance, nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, interleukin-6, and high-sensitivity C-reactive protein between the two groups. The serum high molecular weight adiponectin was negatively associated with the insulin level and insulin resistance in the women exposed to SHS. However, no significant relationships were seen between the high molecular weight adiponectin and nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, high-sensitivity C-reactive protein in the SHS group.
Discussion: There were no significant differences in the metabolic, oxidative stress, and inflammatory markers between the SHS exposure and non-SHS exposure healthy women. A low serum level of high molecular weight adiponectin was associated with an increased insulin level and resistance in the women exposed to SHS.
OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.
METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.
RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.
CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.
METHODS: A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5) using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded.
RESULTS: On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment.
CONCLUSIONS: Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.
PARTICIPANTS: A total of 1210 Japanese lactating women who satisfied the inclusion criteria, were invited across the country at various participating sites, between 2014 and 2019. Finally a total of 1122 women were enrolled in this study.
FINDINGS TO DATE: Among 1122 eligible participants, mean age at delivery was 31.2 (SD 4.4) years and mean prepregnancy BMI was 20.8 (SD 2.7). Among these women, 35% were previously nulliparous and 77.7% had college, university or higher education. The mean gestational period was 39.0 (SD 1.3) weeks. Caesarean section was reported among 11.9%; mean infant birth weight was 3082 (SD 360) g. Of the infants, 53.7% were male. Overall, our participants appeared to be healthier than the general population in Japan. Analyses of the 1079 eligible human milk samples obtained at the first and second months postpartum showed the following composition: carbohydrate, 8.13 (SD 0.32) g/100 mL; fat, 3.77 (SD 1.29) g/100 mL; and crude protein, 1.20 (SD 0.23) g/100 mL. We also analysed osteopontin, fatty acid, vitamin D and phospholipid levels in limited subcohorts of the samples.
FUTURE PLANS: Follow-up surveys will be conducted to obtain milk samples every 2 months for 12 months and to investigate mother and child health until the children reach 5 years of age. These will be completed in 2024. We plan to longitudinally analyse the composition of macronutrients and various bioactive factors in human milk and investigate the lifestyle and environmental factors that influence breastfeeding practices, maternal and child health, and child development.
TRIAL REGISTRATION NUMBER: UMIN000015494; pre-results.