Displaying publications 61 - 80 of 332 in total

Abstract:
Sort:
  1. Fang J, Tan YC, Tai VC, Janasekaran S, Kee CC, Wang D, et al.
    Heliyon, 2024 Nov 30;10(22):e40200.
    PMID: 39641018 DOI: 10.1016/j.heliyon.2024.e40200
    This paper provides an in-depth review of the advancements and challenges associated with Titanium Matrix Composites (TMCs) in Selective Laser Melting (SLM). Material selection, SLM processing parameters, and their influence on the microstructure and properties of TMCs are discussed. The relationship between processing parameters, material characteristics, and the development of defects such as balling, porosity, and cracking is examined. Critical factors influencing the evolution of microstructure and defect formation in TMCs processed by SLM are highlighted. Strengthening mechanisms such as dislocation movements, grain refinement, the Orowan process, and load-bearing capacity are analyzed, and their roles in enhancing hardness, tensile strength, corrosion resistance, and wear resistance are explored. It is indicated by key findings that less than 5 % reinforcement content by volume can significantly enhance mechanical properties, achieving maximum hardness values of approximately 1000 HV and tensile strength close to 1500 MPa. However, this improvement is accompanied by a notable decrease in elongation. The importance of optimizing SLM parameters such as laser power, scan speed, hatch distance, layer thickness, and particle contents to minimize defects and enhance material performance is underscored. Existing research gaps in defect management and material distribution are identified. Future research directions on improving TMCs performance through advanced SLM techniques are suggested.
  2. Qin Q, Zheng L, Chen L, Yang Y, Li H, Wang J, et al.
    BMC Nurs, 2024 Dec 18;23(1):915.
    PMID: 39696371 DOI: 10.1186/s12912-024-02612-6
    BACKGROUND: Nursing interns, the future nurses, often find it challenging to interact with trauma survivors due to their lack of experience and training. Assessing their attitudes and knowledge in trauma-informed care can improve their clinical performance.

    OBJECTIVE: To culturally adapt and assess the reliability and validity of the Attitudes Related to Trauma-Informed Care Scale in Chinese nursing interns.

    DESIGN: Quantitative cross-sectional design.

    METHODS: The translation of Attitudes Related to the Trauma-Informed Care (ARTIC) Scale followed guidelines for the cross-cultural adaptation process. A survey was conducted with 490 nursing interns from two colleges in China in February and May 2024, and seven experts evaluated the content equivalence of each item. Reliability and validity were assessed using item analysis, exploratory factor analysis, confirmatory factor analysis, internal consistency reliability, and test-retest reliability.

    RESULTS: The Chinese version of the ARTIC-C retained 35 items and demonstrated high content validity. Exploratory factor analysis revealed a 6-factor structure, explaining 61.887% of the total variance. Confirmatory factor analysis indicated that the 6-factor model adequately represented the scale structure: chi-square/degree of freedom (CMIN/DF) = 1.544, root mean square error of approximation (RMSEA) = 0.045, comparative fit index (CFI) = 0.969, incremental fit index (IFI) = 0.969, Tucker Lewis index (TLI) = 0.966, and standardized root mean square residual (SRMR) = 0.046. The scale had a Cronbach's alpha of 0.916 and test-retest reliability of 0.876.

    CONCLUSIONS: The Chinese version of the ARTIC-C scale has demonstrated strong reliability and validity, making it an effective tool for measuring Chinese nursing interns' attitudes and knowledge regarding trauma-informed care.

  3. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

  4. Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, et al.
    J Hazard Mater, 2021 03 05;405:124138.
    PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138
    Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
  5. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
    Environ Chem Lett, 2021 Jan 13.
    PMID: 33462541 DOI: 10.1007/s10311-020-01177-5
    Dwindling fossil fuels and improper waste management are major challenges in the context of increasing population and industrialization, calling for new waste-to-energy sources. For instance, refuse-derived fuels can be produced from transformation of municipal solid waste, which is forecasted to reach 2.6 billion metric tonnes in 2030. Gasification is a thermal-induced chemical reaction that produces gaseous fuel such as hydrogen and syngas. Here, we review refuse-derived fuel gasification with focus on practices in various countries, recent progress in gasification, gasification modelling and economic analysis. We found that some countries that replace coal by refuse-derived fuel reduce CO2 emission by 40%, and decrease the amount municipal solid waste being sent to landfill by more than 50%. The production cost of energy via refuse-derived fuel gasification is estimated at 0.05 USD/kWh. Co-gasification by using two feedstocks appears more beneficial over conventional gasification in terms of minimum tar formation and improved process efficiency.
  6. Yan L, Le QV, Sonne C, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 04 05;407:124771.
    PMID: 33388721 DOI: 10.1016/j.jhazmat.2020.124771
    Soil and water contaminated with radionuclides threaten the environment and public health during leaks from nuclear power plants. Remediation of radionuclides at the contaminated sites uses mainly physical and chemical methods such as vitrification, chemical immobilization, electro-kinetic remediation and soil excavation, capping and washing being among the preferred methods. These traditional technologies are however costly and less suitable for dealing with large-area pollution. In contrast to this, cost-effective and environment-friendly alternatives such as phytoremediation using plants to remove radionuclides from polluted sites in situ represent promising alternatives for environmental cleanup. Understanding the physiology and molecular mechanisms of radionuclides accumulation in plants is essential to optimize and improve this new remediation technology. Here, we give an overview of radionuclide contamination in the environment and biochemical characteristics for uptake, transport, and compartmentation of radionuclides in plants that characterize phytoextraction and its efficiency. Phytoextraction is an eco-friendly and efficient method for environmental removal of radionuclides at contaminated sites such as mine tailings. Selecting the most proper plant for the specific purpose, however, is important to obtain the best result together with, for example, applying soil amendments such as citric acid. In addition, using genetic engineering and optimizing agronomic management practices including regulation of atmospheric CO2 concentration, reasonable measures of fertilization and rational water management are important as well. For future application, the technique needs commercialization in order to fully exploit the technique at mining activities and nuclear industries.
  7. Gu M, Savoldi F, Chan EYL, Tse CSK, Lau MTW, Wey MC, et al.
    Orthod Craniofac Res, 2021 Aug;24(3):360-369.
    PMID: 33217159 DOI: 10.1111/ocr.12442
    BACKGROUND: The present study compared the treatment changes in the upper airway, hyoid bone position and craniofacial morphology between two groups of children with skeletal class II malocclusion treated with the headgear activator (HGA) and Herbst appliance (Herbst).

    SETTING AND SAMPLE POPULATION: Orthodontic population from the Faculty of Dentistry of the University of Hong Kong.

    METHODS: Thirty-four skeletal class II patients treated with the HGA (17 patients, mean age 10.6 ± 1.5 years) and the Herbst (17 patients, mean age 11.0 ± 1.4 years) were matched for sex, age, overjet, skeletal class and mandibular divergence. The patients received lateral cephalometric radiographs (LCRs) at the beginning of treatment (T1 ), after treatment (T2 ) and at follow-up (T3 ). In the HGA group, patients underwent LCRs 7 months before the beginning of treatment (T0 ), which were used as growth reference for intra-group comparison. Paired Student's t tests were used for intra- and inter-group comparisons (α = .05).

    RESULTS: Treatment changes (T2 -T1 ) did not differ significantly between the groups. However, at follow-up (T3 -T1 ) the Herbst group showed a smaller increase than the HGA group in the vertical position of the hyoid bone relative to the Frankfort plane (P = .013) and mandibular plane (P = .013).

    CONCLUSIONS: There were no significant differences in the upper airway, hyoid bone position and craniofacial morphology between the groups at the end of treatment. However, the Herbst may provide better long-term control of the vertical position of the hyoid bone than the HGA in children with skeletal class II malocclusion.

  8. Hong W, Li J, Chang Z, Tan X, Yang H, Ouyang Y, et al.
    J Antibiot (Tokyo), 2017 Jul;70(7):832-844.
    PMID: 28465626 DOI: 10.1038/ja.2017.55
    The emergence of drug resistance in bacterial pathogens is a growing clinical problem that poses difficult challenges in patient management. To exacerbate this problem, there is currently a serious lack of antibacterial agents that are designed to target extremely drug-resistant bacterial strains. Here we describe the design, synthesis and antibacterial testing of a series of 40 novel indole core derivatives, which are predicated by molecular modeling to be potential glycosyltransferase inhibitors. Twenty of these derivatives were found to show in vitro inhibition of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Four of these strains showed additional activity against Gram-negative bacteria, including extended-spectrum beta-lactamase producing Enterobacteriaceae, imipenem-resistant Klebsiella pneumoniae and multidrug-resistant Acinetobacter baumanii, and against Mycobacterium tuberculosis H37Ra. These four compounds are candidates for developing into broad-spectrum anti-infective agents.
  9. Yang Y, Swierczak A, Ibahim M, Paiva P, Cann L, Stevenson AW, et al.
    Radiother Oncol, 2019 04;133:93-99.
    PMID: 30935588 DOI: 10.1016/j.radonc.2019.01.006
    BACKGROUND: Synchrotron microbeam radiation therapy (MRT) is a new, evolving form of radiotherapy that has potential for clinical application. Several studies have shown in preclinical models that synchrotron MRT achieves equivalent tumor control to conventional radiotherapy (CRT) but with significantly reduced normal tissue damage.

    METHODS: To explore differences between these two modalities, we assessed the immune cell infiltrate into EMT6.5 mammary tumors after CRT and MRT.

    RESULTS: CRT induced marked increases in tumor-associated macrophages and neutrophils while there were no increases in these populations following MRT. In contrast, there were higher numbers of T cells in the MRT treated tumors. There were also increased levels of CCL2 by immunohistochemistry in tumors subjected to CRT, but not to MRT. Conversely, we found that MRT induced higher levels of pro-inflammatory genes in tumors than CRT.

    CONCLUSION: Our data are the first to demonstrate substantial differences in macrophage, neutrophil and T cell numbers in tumors following MRT versus CRT, providing support for the concept that MRT evokes a different immunomodulatory response in tumors compared to CRT.

  10. Goh MS, Lam SD, Yang Y, Naqiuddin M, Addis SNK, Yong WTL, et al.
    J Hazard Mater, 2021 10 15;420:126624.
    PMID: 34329083 DOI: 10.1016/j.jhazmat.2021.126624
    In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.
  11. Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127329.
    PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329
    Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
  12. Li G, Yan L, Chen X, Lam SS, Rinklebe J, Yu Q, et al.
    Chemosphere, 2023 Apr;320:138058.
    PMID: 36746249 DOI: 10.1016/j.chemosphere.2023.138058
    Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
  13. Yang Y, Foong SY, He Y, Liew RK, Ma NL, Yek PNY, et al.
    Environ Res, 2024 May 01;248:118282.
    PMID: 38295974 DOI: 10.1016/j.envres.2024.118282
    The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.
  14. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
  15. He S, Ding L, He K, Zheng B, Liu D, Zhang M, et al.
    BMC Psychiatry, 2022 Dec 29;22(1):834.
    PMID: 36581864 DOI: 10.1186/s12888-022-04487-w
    BACKGROUND: Although disturbances in biological rhythms are closely related to the onset of major depressive disorder (MDD), they are not commonly assessed in Chinese clinical practice. The Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN) has been used to evaluate disturbances in biological rhythms in MDD. We aimed to assess and confirm the reliability and validity of the Chinese version of the BRIAN (C-BRIAN) in patients with MDD.

    METHODS: A total of 120 patients with MDD and 40 age- and sex-matched controls were recruited consecutively. Reliability was estimated using Cronbach's alpha, the split-half coefficient, and the test-retest coefficient; test-retest reliability was assessed using Spearman's correlation coefficient. A confirmatory factor analysis was used to determine the construct validity of the scale. The Pittsburgh Sleep Quality Index (PSQI) and the Morningness-Eveningness Questionnaire (MEQ) were used to check concurrent validity by evaluating the correlation between the C-BRIAN, PSQI, and MEQ.

    RESULTS: The overall Cronbach's α value was 0.898, indicating good internal consistency. The Guttman split-half coefficient was 0.792, indicating good split-half reliability. Moreover, the test-retest reliability for both the total and individual item score was excellent. Confirmatory factor analysis revealed that construct validity was acceptable (χ2/df = 2.117, GFI = 0.80, AGFI = 0.87, CFI = 0.848, and RMSEA = 0.097). Furthermore, total BRIAN scores were found to be negatively correlated with MEQ (r = - 0.517, P 

  16. Peng Z, Xue H, Liu X, Wang S, Liu G, Jia X, et al.
    Front Bioeng Biotechnol, 2023;11:1222088.
    PMID: 37539434 DOI: 10.3389/fbioe.2023.1222088
    The development of cost-effective, biocompatible soft wound dressings is highly desirable; however, conventional dressings are only designed for flat wounds, which creates difficulty with promising healing efficiency in complex practical conditions. Herein, we developed a tough, adhesive biomimetic hyaluronic acid methacryloyl hydrogels composed of chemically crosslinked hyaluronic acid methacryloyl (HAMA) network and poly(N-hydroxyethyl acrylamide) (PHEAA) network rich in multiple hydrogen bonding. Due to the multiple chemical crosslinking sites (acrylamide groups) of HAMA; the bulk HEMA/PHEAA hydrogels presented significant enhancements in mechanical properties (∼0.45 MPa) than common hyaluronic acid hydrogels (<0.1 MPa). The abundant hydrogen bonding also endowed the resultant hydrogels with extremely high adhesiveness on many nonporous substrates, including glass and biological tissues (e.g., heart, liver, lung, kidney, stomach, and muscle), with a considerable interfacial toughness of ∼1432 J m-2. Accordingly, since both natural hyaluronic acid derivative polymers and hydrophilic PHEAA networks are highly biocompatible, the hydrogel matrix possesses good blood compatibility (<5% of hemolysis ratio) and satisfies the general dressing requirements (>99% of cell viability). Based on these physicochemical features, we have demonstrated that this adhesive hydrogel, administered in the form of a designed patch, could be applied to wound tissue healing by promoting epithelialization, angiogenesis, and collagen deposition. We believe that our proposed biomimetic hydrogel design holds great potential for wound repair and our developed HAMA/PHEAA hydrogels are extremely promising for the next-generation tissue healings in emergency situations.
  17. Li Y, Dong W, Zhang L, Yang Y, Song Y, Shi N, et al.
    Aesthet Surg J, 2024 Jan 25.
    PMID: 38271268 DOI: 10.1093/asj/sjae010
    BACKGROUND: Large and long ears are regarded as symbols of wealth and health in eastern Asian culture, patients with lying ears wish their ears to be more exposed and prominent. Surgeries correcting lying ears have been documented.

    OBJECTIVES: We report correction of lying ears and aesthetic modification of helix and ear lobule with HA injections.

    METHODS: We performed HA injections at auriculocephalic sulcus (AS) to increase cranioauricular angle (CA) and correct lying ears. The injections at helix and lobule were case-specific. The CA was measured and photographs were taken at baseline and 1-, 3-, 6-, and 10-month follow-ups. Efficacy was assessed using a 5-point global aesthetic improvement scale (GAIS). Adverse events (AEs) were recorded.

    RESULTS: Forty-six patients (92 ears) received HA injections and completed follow-ups. Instant correction outcomes were observed. Sixteen (34.8%) patients received one touch-up injection, whose clinical efficacy persisted for 1 to 1.5 years. The GAIS for over 90% of cases with touch-up treatment was "very much improved" or "much improved" at all follow-ups. The GAIS for over 70% of cases without touch-up treatment was "very much improved" or "much improved" at 1, 3, and 6-month follow-ups. CA increased significantly compared with the baseline. Patients also reported "more V-shaped face shape" and "lifted jawline" effects. No serious AEs occurred.

    CONCLUSIONS: As an alternative technique to surgeries, HA filler injections at AS effectively corrected lying ears. This technique produced immediate, long-lasting, and aesthetically pleasing results. The side effects and downtime were minimal.

  18. Tian X, Teo WFA, Wee WY, Yang Y, Ahmed H, Jakubovics NS, et al.
    BMC Genomics, 2023 Dec 04;24(1):734.
    PMID: 38049764 DOI: 10.1186/s12864-023-09831-2
    BACKGROUND: Actinomyces strains are commonly found as part of the normal microflora on human tissue surfaces, including the oropharynx, gastrointestinal tract, and female genital tract. Understanding the diversity and characterization of Actinomyces species is crucial for human health, as they play an important role in dental plaque formation and biofilm-related infections. Two Actinomyces strains ATCC 49340 T and ATCC 51655 T have been utilized in various studies, but their accurate species classification and description remain unresolved.

    RESULTS: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA, rpoB, pgi, metG, gltA, gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them.

    CONCLUSION: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed.

  19. Su MH, Azwar E, Yang Y, Sonne C, Yek PNY, Liew RK, et al.
    J Hazard Mater, 2020 Sep 05;396:122610.
    PMID: 32298865 DOI: 10.1016/j.jhazmat.2020.122610
    This study examined an aquaponic approach of circulating water containing ammonia excretions from African catfish grown in an aquaculture tank for bacterial conversion into nitrates, which then acted as a nutrient substance to cultivate lettuce in hydroponic tank. We found that microwave pyrolysis biochar (450 g) having microporous (1.803 nm) and high BET surface area (419 m2/g) was suitable for use as biological carrier to grow nitrifying bacteria (63 g of biofilm mass) that treated the water quality through removing the ammonia (67%) and total suspended solids (68%), resulting in low concentration of remaining ammonia (0.42 mg/L) and total suspended solid (59.40 mg/L). It also increased the pH (6.8), converted the ammonia into nitrate (29.7 mg/L), and increased the nitrogen uptake by the lettuce (110 mg of nitrogen per plant), resulting in higher growth in lettuce (0.0562 %/day) while maintaining BOD5 level (3.94 mg/L) at acceptable level and 100% of catfish survival rate. Our results demonstrated that microwave pyrolysis biochar can be a promising solution for growing nitrifying bacteria in aquaponic system for simultaneous toxic ammonia remediation and generation of nitrate for growing vegetable in aquaculture industry.
  20. Yang Y, Liang Q, Zhang B, Zhang J, Fan L, Kang J, et al.
    J Chromatogr A, 2024 Jan 25;1715:464621.
    PMID: 38198876 DOI: 10.1016/j.chroma.2023.464621
    White tea contains the highest flavonoids compared to other teas. While there have been numerous studies on the components of different tea varieties, research explicitly focusing on the flavonoid content of white tea remains scarce, making the need for a good flavonoid purification process for white tea even more important. This study compared the adsorption and desorption performance of five types of macroporous resins: D101, HP20, HPD500, DM301, and AB-8. Among the tested resins, AB-8 was selected based on its best adsorption and desorption performance to investigate the static adsorption kinetics and dynamic adsorption-desorption purification of white tea flavonoids. The optimal purification process was determined: adsorption temperature 25 °C, crude tea flavonoid extract pH 3, ethanol concentration 80 %, sample loading flow rate and eluent flow rate 1.5 BV/min, and eluent dosage 40 BV. The results indicated that the adsorption process followed pseudo-second-order kinetics. Under the above purification conditions, the purity of the total flavonoids in the purified white tea flavonoid increased from approximately 17.69 to 46.23 %, achieving a 2.61-fold improvement, indicating good purification results. The purified white tea flavonoid can be further used for nutraceutical and pharmaceutical applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links