MATERIALS AND METHODS: We report 20 consecutive patients with end-stage renal failure (ESRF) who had central vein occlusion and were not amenable to endovascular intervention. They underwent extra-anatomical vein to vein surgical bypass. The axillary and iliac or femoral veins were approached via infraclavicular and extraperitoneal groin incisions respectively. In all the patients, an externally supported 6 or 8 mm polytetrafluoroethylene (PTFE) graft was used as a conduit and was tunnelled extra-anatomical. All patients had double antiplatelet (Aspirin and Clopidogrel) therapy post-operatively.
RESULTS: Substantial improvement in the facial, neck and upper limb swelling was noticed following this diversion surgery. The vein to vein bypass was patent at 12 months in 10 out of 20 patients. Graft infection occurred in two (10%) cases. Re-thrombectomy or assisted patency procedure (stent/plasty) was done in four (20%) cases. The patients with preoperative fistula flow rate of more than 1500 ml/min and post-operative graft flow rate of more than a 1000 ml/min were patent at 12 months (P=0.025 and p=0.034 respectively).
CONCLUSION: Axillary to iliac/femoral vein bypass can salvage functioning ipsilateral fistula threatened by occluded upper central vein.
METHODS: In 567 adult participants planned for AVF creation, all were randomised to fish oil (4g/d) or placebo, and 406 to aspirin (100mg/d) or placebo, starting one day pre-surgery and continued for three months. Outcomes evaluated within 12 months included AVF intervention rates, CVC exposure, late dialysis suitability failure, and times to primary patency loss, abandonment and successful cannulation.
RESULTS: Final analyses included 536 participants randomised to fish oil or placebo (mean age 55 years, 64% male, 45% diabetic) and 388 randomised to aspirin or placebo. Compared with placebo, fish oil reduced intervention rates (0.82 vs 1.14/1000 patient-days, incidence rate ratio [IRR] 0.72, 95% confidence interval [CI] 0.54-0.97), particularly interventions for acute thrombosis (0.09 vs 0.17/1000 patient-days, IRR 0.53, 95% CI 0.34-0.84). Aspirin significantly reduced rescue intervention rates (IRR 0.45, 95% CI 0.27-0.78). Neither agent significantly affected CVC exposure, late dialysis suitability failure or time to primary patency loss, AVF abandonment or successful cannulation.
CONCLUSION: Although fish oil and low-dose aspirin given for 3 months reduced intervention rates in newly created AVF, they had no significant effects on CVC exposure, AVF usability and time to primary patency loss or access abandonment. Reduction in access interventions benefits patients, reduces costs and warrants further study.
METHODS: We performed a 3 × 2 partial factorial double-blind trial of 17,598 participants with stable cardiovascular disease and peripheral artery disease. Participants were randomly assigned to groups given pantoprazole 40 mg daily or placebo, as well as rivaroxaban 2.5 mg twice daily with aspirin 100 mg once daily, rivaroxaban 5 mg twice daily, or aspirin 100 mg alone. The primary outcome was time to first upper gastrointestinal event, defined as a composite of overt bleeding, upper gastrointestinal bleeding from a gastroduodenal lesion or of unknown origin, occult bleeding, symptomatic gastroduodenal ulcer or ≥5 erosions, upper gastrointestinal obstruction, or perforation.
RESULTS: There was no significant difference in upper gastrointestinal events between the pantoprazole group (102 of 8791 events) and the placebo group (116 of 8807 events) (hazard ratio, 0.88; 95% confidence interval [CI], 0.67-1.15). Pantoprazole significantly reduced bleeding of gastroduodenal lesions (hazard ratio, 0.52; 95% confidence interval, 0.28-0.94; P = .03); this reduction was greater when we used a post-hoc definition of bleeding gastroduodenal lesion (hazard ratio, 0.45; 95% confidence interval, 0.27-0.74), although the number needed to treat still was high (n = 982; 95% confidence interval, 609-2528).
CONCLUSIONS: In a randomized placebo-controlled trial, we found that routine use of proton pump inhibitors in patients receiving low-dose anticoagulation and/or aspirin for stable cardiovascular disease does not reduce upper gastrointestinal events, but may reduce bleeding from gastroduodenal lesions. ClinicalTrials.gov ID: NCT01776424.
METHODS: We performed a 3 × 2 partial factorial double-blind trial of 17,598 participants with stable cardiovascular disease and peripheral artery disease randomly assigned to groups given pantoprazole (40 mg daily, n = 8791) or placebo (n = 8807). Participants were also randomly assigned to groups that received rivaroxaban (2.5 mg twice daily) with aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg) alone. We collected data on development of pneumonia, Clostridium difficile infection, other enteric infections, fractures, gastric atrophy, chronic kidney disease, diabetes, chronic obstructive lung disease, dementia, cardiovascular disease, cancer, hospitalizations, and all-cause mortality every 6 months. Patients were followed up for a median of 3.01 years, with 53,152 patient-years of follow-up.
RESULTS: There was no statistically significant difference between the pantoprazole and placebo groups in safety events except for enteric infections (1.4% vs 1.0% in the placebo group; odds ratio, 1.33; 95% confidence interval, 1.01-1.75). For all other safety outcomes, proportions were similar between groups except for C difficile infection, which was approximately twice as common in the pantoprazole vs the placebo group, although there were only 13 events, so this difference was not statistically significant.
CONCLUSIONS: In a large placebo-controlled randomized trial, we found that pantoprazole is not associated with any adverse event when used for 3 years, with the possible exception of an increased risk of enteric infections. ClinicalTrials.gov Number: NCT01776424.
METHODS: The authors randomized 10,010 patients with or at risk of atherosclerosis and scheduled for noncardiac surgery in a 1:1:1:1 ratio to clonidine/aspirin, clonidine/aspirin placebo, clonidine placebo/aspirin, or clonidine placebo/aspirin placebo. Patients started taking aspirin or placebo just before surgery; those not previously taking aspirin continued daily for 30 days, and those taking aspirin previously continued for 7 days. Patients were also randomly assigned to receive clonidine or placebo just before surgery, with the study drug continued for 72 h.
RESULTS: Neither aspirin nor clonidine had a significant effect on the primary 1-yr outcome, a composite of death or nonfatal myocardial infarction, with a 1-yr hazard ratio for aspirin of 1.00 (95% CI, 0.89 to 1.12; P = 0.948; 586 patients [11.8%] vs. 589 patients [11.8%]) and a hazard ratio for clonidine of 1.07 (95% CI, 0.96 to 1.20; P = 0.218; 608 patients [12.1%] vs. 567 patients [11.3%]), with effect on death or nonfatal infarction. Reduction in death and nonfatal myocardial infarction from aspirin in patients who previously had percutaneous coronary intervention at 30 days persisted at 1 yr. Specifically, the hazard ratio was 0.58 (95% CI, 0.35 to 0.95) in those with previous percutaneous coronary intervention and 1.03 (95% CI, 0.91to 1.16) in those without (interaction P = 0.033). There was no significant effect of either drug on death, cardiovascular complications, cancer, or chronic incisional pain at 1 yr (all P > 0.1).
CONCLUSIONS: Neither perioperative aspirin nor clonidine have significant long-term effects after noncardiac surgery. Perioperative aspirin in patients with previous percutaneous coronary intervention showed persistent benefit at 1 yr, a plausible sub-group effect.
METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months.
RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=-4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group.
CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events. (Funded by Bayer; COMPASS ClinicalTrials.gov number, NCT01776424 .).