Displaying publications 61 - 80 of 190 in total

Abstract:
Sort:
  1. Moo EK, Amrein M, Epstein M, Duvall M, Abu Osman NA, Pingguan-Murphy B, et al.
    Biophys J, 2013 Oct 1;105(7):1590-600.
    PMID: 24094400 DOI: 10.1016/j.bpj.2013.08.035
    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.
    Matched MeSH terms: Cell Death
  2. Sukmana I
    ScientificWorldJournal, 2012;2012:201352.
    PMID: 22623881 DOI: 10.1100/2012/201352
    The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined.
    Matched MeSH terms: Cell Death
  3. Leong OK, Muhammad TS, Sulaiman SF
    PMID: 19541726 DOI: 10.1093/ecam/nep057
    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug.
    Matched MeSH terms: Cell Death
  4. Ayanniyi AA, Fasasi MK
    Malays J Med Sci, 2013 Jan;20(1):88-91.
    PMID: 23613660
    A hot water burn is a thermal injury that results in cell death. Thermal eye injury triggers inflammatory processes, including inflammatory cell influx and/or the activation of various inflammatory cells, which result in the rapid accumulation of extravascular fluid in the ocular tissue. The ocular effect depends on the temperature of the water, and the final visual outcome depends on the severity of the damage to the intraocular structures. We report a 23-year-old woman who experienced a facial hot water burn that resulted in blindness. The patient presented late to the hospital after the unsuccessful use of traditional medication. Facial burns are a known cause of blindness. Public health education on prompt hospital presentation, and resistance to the use of potentially harmful traditional medicine in facial burns is suggested.
    Matched MeSH terms: Cell Death
  5. Ismail N, Akhtar MN, Ismail M, Zareen S, Shah SA, Lajis NH, et al.
    Nat Prod Res, 2015;29(16):1571-4.
    PMID: 25471591 DOI: 10.1080/14786419.2014.985676
    The stem bark extracts of Knema laurina inhibited the hydrogen peroxide (H2O2)- and aggregated amyloid β-peptide 1-42 length (Aβ(1-42))-induced cell death in differentiated SH-SY5Y cells. Exposure of 250 μM H2O2 or 20 μM Aβ(1-42) to the cells for 24 h reduced 50% of cell viability. Pretreatment of cells with ethyl acetate extract (EAE) or n-butanol extract (BE) at 300 μg/mL and then exposure to H2O2 protected the cells against the neurotoxic effects of H2O2. Besides, methanolic extract (ME) at 1 and 10 μg/mL exerted neuroprotective effect on Aβ(1-42)-induced toxicity to the cells. These results showed that EAE, BE and ME exhibited neuroprotective activities against H2O2- and Aβ(1-42)-induced cell death. Flavonoids (3-6) and β-sitosterol glucoside (8) were isolated from the EAE. Compound 1 was isolated from hexane extract, and compounds 2 and 7 were isolated from dichloromethane extract. All these observations provide the possible evidence for contribution in the neuroprotective effects.
    Matched MeSH terms: Cell Death/drug effects
  6. Ng WK, Saiful Yazan L, Yap LH, Wan Nor Hafiza WA, How CW, Abdullah R
    Biomed Res Int, 2015;2015:263131.
    PMID: 25632388 DOI: 10.1155/2015/263131
    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than -30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.
    Matched MeSH terms: Cell Death/drug effects
  7. Er HM, Cheng EH, Radhakrishnan AK
    J Ethnopharmacol, 2007 Sep 25;113(3):448-56.
    PMID: 17698306
    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on the 4T1 and NIH/3T3 cells as the EC(50) values obtained are greater than 50 microg/mL when tested under optimal culture condition. Moreover, the aqueous extract may form mutagenic compound(s) upon the metabolisation by liver enzymes.
    Matched MeSH terms: Cell Death/drug effects
  8. Chua KH, Lian LH, Sim XJ, Cheah TE, Lau TP
    Int J Mol Sci, 2015;16(5):9794-803.
    PMID: 25938972 DOI: 10.3390/ijms16059794
    The programmed cell death 1 (PDCD1) gene encodes for the PD-1 (programmed death 1) molecule, which negatively regulates self-reactive T- and B-cells in the maintenance of peripheral tolerance. A previous report had shown the development of lupus-like phenotypes in PD-1-deficient C57BL/6 mice, was suggestive to the role of PDCD1 in predisposing to systemic lupus erythematosus (SLE). Hence, we aimed to investigate the association between PDCD1 and SLE susceptibility in the Malaysian population. A TaqMan-based real-time PCR was employed to screen for PD1.1, PD1.3, PD1.5 and PD1.6 in both SLE and healthy control groups of 200 samples each. The observed frequency for PD1.5C/C genotype was significantly higher in Indian SLE patients and Malay controls (p < 0.01). On the other hand, the PD1.5C/T genotype might predispose the Malays to SLE, but confer a protective effect among the Indians (p < 0.01). The PD1.1, PD1.3 and PD1.6 were, however, not correlated to genetic predisposition of SLE in our Malaysian population. In conclusion, PD1.5 variant was significantly associated to SLE susceptibility in our Malaysian cohort. Our failure in replicating the association between other investigated PDCD1 variants and risk of getting SLE might due to ethnic and geographic variations in the distribution of these genetic variants.
    Matched MeSH terms: Programmed Cell Death 1 Receptor/genetics*
  9. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Cell Death/drug effects
  10. Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY
    Metab Brain Dis, 2020 01;35(1):11-30.
    PMID: 31811496 DOI: 10.1007/s11011-019-00516-y
    Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
    Matched MeSH terms: Cell Death/physiology
  11. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Cell Death/drug effects
  12. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgcell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.
    Matched MeSH terms: Cell Death/drug effects
  13. Syed Azhar SNA, Ashari SE, Salim N
    Int J Nanomedicine, 2018;13:6465-6479.
    PMID: 30410332 DOI: 10.2147/IJN.S171532
    Introduction: Kojic monooleate (KMO) is an ester derived from a fungal metabolite of kojic acid with monounsaturated fatty acid, oleic acid, which contains tyrosinase inhibitor to treat skin disorders such as hyperpigmentation. In this study, KMO was formulated in an oil-in-water nanoemulsion as a carrier for better penetration into the skin.

    Methods: The nanoemulsion was prepared by using high and low energy emulsification technique. D-optimal mixture experimental design was generated as a tool for optimizing the composition of nanoemulsions suitable for topical delivery systems. Effects of formulation variables including KMO (2.0%-10.0% w/w), mixture of castor oil (CO):lemon essential oil (LO; 9:1) (1.0%-5.0% w/w), Tween 80 (1.0%-4.0% w/w), xanthan gum (0.5%-1.5% w/w), and deionized water (78.8%-94.8% w/w), on droplet size as a response were determined.

    Results: Analysis of variance showed that the fitness of the quadratic polynomial fits the experimental data with F-value (2,479.87), a low P-value (P<0.0001), and a nonsignificant lack of fit. The optimized formulation of KMO-enriched nanoemulsion with desirable criteria was KMO (10.0% w/w), Tween 80 (3.19% w/w), CO:LO (3.74% w/w), xanthan gum (0.70% w/w), and deionized water (81.68% w/w). This optimum formulation showed good agreement between the actual droplet size (110.01 nm) and the predicted droplet size (111.73 nm) with a residual standard error <2.0%. The optimized formulation with pH values (6.28) showed high conductivity (1,492.00 µScm-1) and remained stable under accelerated stability study during storage at 4°C, 25°C, and 45°C for 90 days, centrifugal force as well as freeze-thaw cycles. Rheology measurement justified that the optimized formulation was more elastic (shear thinning and pseudo-plastic properties) rather than demonstrating viscous characteristics. In vitro cytotoxicity of the optimized KMO formulation and KMO oil showed that IC50 (50% inhibition of cell viability) value was >100 µg/mL.

    Conclusion: The survival rate of 3T3 cell on KMO formulation (54.76%) was found to be higher compared to KMO oil (53.37%) without any toxicity sign. This proved that the KMO formulation was less toxic and can be applied for cosmeceutical applications.

    Matched MeSH terms: Cell Death/drug effects
  14. Ali R, Alabsi AM, Ali AM, Ideris A, Omar AR, Yusoff K, et al.
    Neurochem Res, 2011 Nov;36(11):2051-62.
    PMID: 21671106 DOI: 10.1007/s11064-011-0529-8
    Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.
    Matched MeSH terms: Cell Death/drug effects
  15. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Programmed Cell Death 1 Receptor/analysis*
  16. Inayat-Hussain SH, Wong LT, Chan KM, Rajab NF, Din LB, Harun R, et al.
    Toxicol Lett, 2009 Dec 15;191(2-3):118-22.
    PMID: 19698770 DOI: 10.1016/j.toxlet.2009.08.012
    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel-Biskis-Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin.
    Matched MeSH terms: Cell Death/drug effects
  17. Sarker MM, Zhong M
    Indian J Pharmacol, 2014 Jan-Feb;46(1):40-5.
    PMID: 24550583 DOI: 10.4103/0253-7613.125164
    Keyhole limpet hemocyanin (KLH) is a popular tumor vaccine carrier protein and an immunostimulant. The present study aimed to investigate the immunoregulatory activity of KLH on cytotoxicity, cytokines production, and proliferation of natural killer (NK) cells. Moreover, antiproliferative activity of KLH on Meth A sarcoma cells was studied.
    Matched MeSH terms: Cell Death/drug effects*
  18. Malviya R, Raj S, Fuloria S, Subramaniyan V, Sathasivam K, Kumari U, et al.
    Int J Nanomedicine, 2021;16:2533-2553.
    PMID: 33824590 DOI: 10.2147/IJN.S300991
    PURPOSE: The present study was intended to fabricate chitosan (Ch)-tamarind gum polysaccharide (TGP) polyelectrolyte complex stabilized cubic nanoparticles of simvastatin and evaluate their potential against human breast cancer cell lines.

    MATERIALS AND METHODS: The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles.

    RESULTS: Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies.

    CONCLUSION: The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.

    Matched MeSH terms: Cell Death/drug effects
  19. Gurunanselage Don RAS, Yap MKK
    Biomed Pharmacother, 2019 Feb;110:918-929.
    PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023
    Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Cell Death/drug effects; Cell Death/physiology
  20. Wen WX, Leong CO
    PLoS One, 2019;14(4):e0215381.
    PMID: 31022191 DOI: 10.1371/journal.pone.0215381
    Immune checkpoint inhibitors have demonstrated effective anti-tumour response in cancer types with high mutation burden (e.g. melanoma) and in subset of cancers with features of genomic instability (e.g. mismatch-repair deficiency). One possible explanation for this effect is the increased expression of immune checkpoint molecules and pre-existing adaptive immune response in these cancers. Given that BRCA1 and BRCA2 are integral in maintaining genomic integrity, we hypothesise that the inactivation of these genes may give rise to breast cancers with such immunogenic phenotype. Therefore, using two large series of publicly available breast cancer datasets, namely that from The Cancer Genome Atlas and Wellcome Trust Institute, we sought to investigate the association between BRCA1- and BRCA2-deficiency with features of genomic instability, expression of PD-L1 and PD-1, landscape of inferred tumour-infiltrating immune cells, and T-cell inflamed signature in breast cancers. Here, we report that BRCA1 and BRCA2-deficient breast cancers were associated with features of genomic instability including increased mutation burden. Interestingly, BRCA1-, but not BRCA2-, deficient breast cancers were associated with increased expression of PD-L1 and PD-1, higher abundance of tumour-infiltrating immune cells, and enrichment of T cell-inflamed signature. The differences in immunophenotype between BRCA1- and BRCA2-deficient breast cancers can be attributed, in part, to PTEN gene mutation. Therefore, features of genomic instability such as that mediated by BRCA1- and BRCA2- deficiency in breast cancer were necessary, but not always sufficient, for yielding T cell-inflamed tumour microenvironment, and by extension, predicting clinical benefit from immunotherapy.
    Matched MeSH terms: Programmed Cell Death 1 Receptor/immunology; Programmed Cell Death 1 Receptor/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links