Displaying publications 61 - 80 of 96 in total

Abstract:
Sort:
  1. Yusop SNW, Imran S, Adenan MI, Sultan S
    Steroids, 2020 12;164:108735.
    PMID: 32976918 DOI: 10.1016/j.steroids.2020.108735
    The fungal transformations of medroxyrogesterone (1) were investigated for the first time using Cunninghamella elegans, Trichothecium roseum, and Mucor plumbeus. The metabolites obtained are as following: 6β, 20-dihydroxymedroxyprogesterone (2), 12β-hydroxymedroxyprogesterone (3), 6β, 11β-dihydroxymedroxyprogesterone (4), 16β-hydroxymedroxyprogesterone (5), 11α, 17-dihydroxy-6α-methylpregn-4-ene-3, 20-dione (6), 11-oxo-medroxyprogesterone (7), 6α-methyl-17α-hydroxypregn-1,4-diene-3,20-dione (8), and 6β-hydroxymedroxyprogesterone (9), 15β-hydroxymedroxyprogesterone (10), 6α-methyl-17α, 11β-dihydroxy-5α-pregnan-3, 20-dione (11), 11β-hydroxymedroxyprogesterone (12), and 11α, 20-dihydroxymedroxyprogesterone (13). Among all the microbial transformed products, the newly isolated biotransformed product 13 showed the most potent activity against proliferation of SH-SY5Y cells. Compounds 12, 5, 6, 9, 11, and 3 (in descending order of activity) also showed some extent of activity against SH-SY5Y tumour cell line. The never been reported biotransformed product, 2, showed the most potent inhibitory activity against acetylcholinesterase. Molecular modelling studies were carried out to understand the observed experimental activities, and also to obtain more information on the binding mode and the interactions between the biotransformed products, and enzyme.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  2. Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M, Awang K
    Bioorg Med Chem, 2016 09 15;24(18):4464-4469.
    PMID: 27492195 DOI: 10.1016/j.bmc.2016.07.043
    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  3. Hematpoor A, Liew SY, Chong WL, Azirun MS, Lee VS, Awang K
    PLoS One, 2016;11(5):e0155265.
    PMID: 27152416 DOI: 10.1371/journal.pone.0155265
    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  4. Liew SY, Khaw KY, Murugaiyah V, Looi CY, Wong YL, Mustafa MR, et al.
    Phytomedicine, 2015 Jan 15;22(1):45-8.
    PMID: 25636869 DOI: 10.1016/j.phymed.2014.11.003
    Nine monoterpenoid indole alkaloids; naucletine (1), angustidine (2), nauclefine (3), angustine (4), naucline (5), angustoline (6), harmane (7), 3,14-dihydroangustoline (8), strictosamide (9) and one quinoline alkaloid glycoside; pumiloside (10) from Nauclea officinalis were tested for cholinesterase inhibitory activity. All the alkaloids except for pumiloside (10) showed strong to weak BChE inhibitory effect with IC50 values ranging between 1.02-168.55 μM. Angustidine (2), nauclefine (3), angustine (4), angustoline (6) and harmane (7) showed higher BChE inhibiting potency compared to galanthamine. Angustidine (2) was the most potent inhibitor towards both AChE and BChE. Molecular docking (MD) studies showed that angustidine (2) docked deep into the bottom gorge of hBChE and formed hydrogen bonding with Ser 198 and His 438. Kinetic study of angustidine (2) on BChE suggested a mixed inhibition mode with an inhibition constant (Ki) of 6.12 μM.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  5. Ramli RA, Lie W, Pyne SG
    J Nat Prod, 2014 Apr 25;77(4):894-901.
    PMID: 24606395 DOI: 10.1021/np400978x
    Four new stichoneurine-type alkaloids, stichoneurines F and G (1-2) and sessilistemonamines E and F (3-4), have been isolated from the root extracts of Stichoneuron caudatum. The structures and relative configurations of these alkaloids have been determined by spectroscopic methods and molecular modeling experiments. Compounds 1-4 were tested for their acetylcholinesterase (AChE) inhibitory activities against human AChE. Compound 3 showed significant inhibitory activity with an IC50 value of 9.1±0.15 μM.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  6. Khan D, Khan HU, Khan F, Khan S, Badshah S, Khan AS, et al.
    PLoS One, 2014;9(4):e94952.
    PMID: 24733024 DOI: 10.1371/journal.pone.0094952
    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1-5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  7. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al.
    Bioorg Chem, 2013 Aug;49:33-9.
    PMID: 23886696 DOI: 10.1016/j.bioorg.2013.06.008
    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  8. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Awang KB, et al.
    Eur J Med Chem, 2013 Sep;67:221-9.
    PMID: 23871902 DOI: 10.1016/j.ejmech.2013.06.054
    Series of hitherto unreported piperidone grafted pyridopyrimidines synthesized through ionic liquid mediated multi-component reaction. These compounds were evaluated for their inhibitory activities against AChE and BChE enzymes. All the compounds displayed considerable potency against AChE with IC50 values ranging from 0.92 to 9.11 μM, therein compounds 6a, 6h and 6i displayed superior enzyme inhibitory activities compared to standard drug with IC50 values of 0.92, 1.29 and 2.07 μM. Remarkably, all the compounds displayed higher BChE inhibitory activity compared to galantamine with IC50 values of 1.89-8.13 μM. Molecular modeling, performed for the most active compounds using three dimensional crystal structures of TcAChE and hBChE, disclosed binding template of these inhibitors into the active site of their respective enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  9. Fadaeinasab M, Hadi AH, Kia Y, Basiri A, Murugaiyah V
    Molecules, 2013 Mar 25;18(4):3779-88.
    PMID: 23529036 DOI: 10.3390/molecules18043779
    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  10. Al-Mekhlafi NA, Shaaria K, Abas F, Jeyaraj EJ, Stanslas J, Khalivulla SI, et al.
    Nat Prod Commun, 2013 Apr;8(4):447-51.
    PMID: 23738449
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL).
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  11. Awang K, Chan G, Litaudon M, Ismail NH, Martin MT, Gueritte F
    Bioorg Med Chem, 2010 Nov 15;18(22):7873-7.
    PMID: 20943395 DOI: 10.1016/j.bmc.2010.09.044
    A significant acetylcholinesterase (AChE) inhibitory activity was observed for the hexane extract from the bark of Mesua elegans (Clusiaceae). Thus, the hexane extract was subjected to chemical investigation, which led to the isolation of nine 4-phenylcoumarins, in which three are new; mesuagenin A (1), mesuagenin C (3), mesuagenin D (4) and one new natural product; mesuagenin B (2). The structures of the isolated compounds were characterized by spectroscopic data interpretation, especially 1D and 2D NMR. Four compounds showed significant AChE inhibitory activity, with mesuagenin B (2) being the most potent (IC(50)=0.7μM).
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  12. Jamila N, Khan N, Khan I, Khan AA, Khan SN
    Nat Prod Res, 2016 Jun;30(12):1388-97.
    PMID: 26158779 DOI: 10.1080/14786419.2015.1060594
    The dichloromethane bark extract of Garcinia hombroniana yielded one new cycloartane triterpene; (22Z,24E)-3β-hydroxycycloart-14,22,24-trien-26-oic acid (1) together with five known compounds: garcihombronane G (2), garcihombronane J (3), 3β acetoxy-9α-hydroxy-17,14-friedolanostan-14,24-dien-26-oic acid (4), (22Z, 24E)-3β, 9α-dihydroxy-17,14-friedolanostan-14,22,24-trien-26-oic acid (5) and 3β, 23α-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid (6). Their structures were established by the spectral techniques of NMR and ESI-MS. These compounds together with some previously isolated compounds; garcihombronane B (7), garcihombronane D (8) 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone (9), volkensiflavone (10), 4''-O-methyll-volkensiflavone (11), volkensiflavone-7-O-glucopyranoside (12), volkensiflavone-7-O-rhamnopyranoside (13), Morelloflavone (14), 3''-O-methyl-morelloflavone (15) and morelloflavone-7-O-glucopyranoside (16) were evaluated for cholinesterase enzymes inhibitory activities using acetylcholinesterase and butyrylcholinesterase. In these activities, compounds 1-9 showed good dual inhibition on both the enzymes while compounds 10-16 did not reasonably contribute to both the cholinesterases inhibitory effects.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  13. Wu J, Pistolozzi M, Liu S, Tan W
    Bioorg Med Chem, 2020 03 01;28(5):115324.
    PMID: 32008882 DOI: 10.1016/j.bmc.2020.115324
    Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer's disease (AD) and Parkinson's disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  14. Boudriga S, Haddad S, Murugaiyah V, Askri M, Knorr M, Strohmann C, et al.
    Molecules, 2020 Apr 23;25(8).
    PMID: 32340203 DOI: 10.3390/molecules25081963
    A novel one-pot [3+2]-cycloaddition reaction of (E)-3-arylidene-1-phenyl-succinimides, cyclic 1,2-diketones (isatin, 5-chloro-isatin and acenaphtenequinone), and diverse α-aminoacids such as 2-phenylglycine or sarcosine is reported. The reaction provides succinimide-substituted dispiropyrrolidine derivatives with high regio- and diastereoselectivities under mild reaction conditions. The stereochemistry of these N-heterocycles has been confirmed by four X-ray diffraction studies. Several synthetized compounds show higher inhibition on acetylcholinesterase (AChE) than butyrylcholinesterase (BChE). Of the 17 synthesized compounds tested, five exhibit good AChE inhibition with IC50 of 11.42 to 22.21 µM. A molecular docking study has also been undertaken for compound 4n possessing the most potent AChE inhibitory activity, disclosing its binding to the peripheral anionic site of AChE enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  15. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Bioorg Med Chem Lett, 2010 Dec 1;20(23):7064-6.
    PMID: 20951037 DOI: 10.1016/j.bmcl.2010.09.108
    Series of pyrolidine analogues were synthesized and examined as acetylcholinesterase (AChE) inhibitors. Among the compounds, compounds 4k and 6k were the most potent inhibitors of the series. Compound 4k, showed potent inhibitory activity against acetyl cholinesterase enzyme with IC(50) 0.10 μmol/L. Pyrolidine analogues might be potential acetyl cholinesterase agents for AD.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  16. Salleh WMNHW, Khamis S
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):467-471.
    PMID: 32469335 DOI: 10.1515/znc-2020-0075
    Chemical composition and anticholinesterase activity of the essential oil of Pavetta graciliflora Wall. ex Ridl. (Rubiaceae) was examined for the first time. The essential oil was obtained by hydrodistillation and was fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). A total of 20 components were identified in the essential oil, which made up 92.85% of the total oil. The essential oil is composed mainly of β-caryophyllene (42.52%), caryophyllene oxide (25.33%), β-pinene (8.67%), and α-pinene (6.52%). The essential oil showed weak inhibitory activity against acetylcholinesterase (AChE) (I%: 62.5%) and butyrylcholinesterase (BChE) (I%: 65.4%) assays. Our findings were shown to be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from P. graciliflora.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  17. Salleh WMNHW, Khamis S, Nafiah MA, Abed SA
    Nat Prod Res, 2021 Jun;35(11):1887-1892.
    PMID: 31293176 DOI: 10.1080/14786419.2019.1639183
    This study was designed to examine the chemical composition and anticholinesterase inhibitory activity of the essential oil of Pseuduvaria macrophylla (Oliv.) Merr. (Annonaceae) from Malaysia. The essential oil was obtained by hydrodistillation and fully analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The analysis led to the identification of thirty-four chemical components that represented 87.7 ± 0.5% of the total oil. The essential oil was found to be rich in germacrene D (21.1 ± 0.4%), bicyclogermacrene (10.5 ± 0.5%), δ-cadinene (5.6 ± 0.2%), α-copaene (5.1 ± 0.3%), and α-cadinol (5.0 ± 0.3%). Anticholinesterase activity was evaluated using Ellman method. The essential oil showed weak inhibitory activity against acetylcholinesterase (I%: 32.5%) and butyrylcholinesterase (I%: 35.4%) assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Pseuduvaria macrophylla.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  18. Ado MA, Maulidiani M, Ismail IS, Ghazali HM, Shaari K, Abas F
    Nat Prod Res, 2021 Sep;35(17):2992-2996.
    PMID: 31631709 DOI: 10.1080/14786419.2019.1679138
    Phytochemical investigation on the soluble fractions of n-hexane and dichloromethane of methanolic leaves extract of the Callicarpa maingayi K. & G. led to the isolation of three triterpenoids [euscaphic acid (1), arjunic acid (2), and ursolic acid (3)] together with two flavones [apigenin (4) and acacetin (5)], two phytosterols [stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)], and a fatty acid [n-hexacosanoic acid (8)]. Six (6) compounds (1, 2, 3, 4, 5, and 8) are reported for the first time from this species. Their structures were elucidated and identified by extensive NMR techniques, GC-MS and comparison with the previously reported literature. Compound 3 was found to displayed good inhibition against acetylcholinesterase with an IC50 value of 21.5 ± 0.022 μM, while 1 and 2 exhibited pronounced α-glucosidase inhibitory activity with IC50 values of 22.4 ± 0.016 μM and 24.9 ± 0.012 μM, respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  19. Ahmad H, Ahmad S, Shah SAA, Khan HU, Khan FA, Ali M, et al.
    J Asian Nat Prod Res, 2018 Feb;20(2):172-181.
    PMID: 28463565 DOI: 10.1080/10286020.2017.1319820
    New lycoctonine-type dual cholinesterase inhibitor, swatinine-C (1), along with three known norditerpenoid alkaloids, hohenackerine (2), aconorine (5) and lappaconitine (6) and two synthetically known but phytochemically new benzene derivatives, methyl 2-acetamidobenzoate (3) and methyl 4-[2-(methoxycarbonyl)anilino]-4-oxobutanoate (4), was isolated from the roots of A. laeve. Structures of new and known compounds (1-6) were established on the basis of latest spectroscopic techniques and by close comparison with the data available in literature. In vitro, compounds (1-6) were tested against AChE and BChE inhibitory activities. Compounds 1 and 2 showed competitive inhibition against AChE (IC50 = 3.7 μM, 4.53 μM) and BChE (IC50 = 12.23 μM, 9.94 μM), respectively. Compounds 5 and 6 showed promising noncompetitive type of inhibitory profile against AChE (IC50 = 2.51 and 6.13 μM) only. Compounds 3 and 4 showed weak inhibitory profile against both AChE and BChE.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  20. Mah SH, Teh SS, Ee GC
    Pharm Biol, 2017 Dec;55(1):920-928.
    PMID: 28152649 DOI: 10.1080/13880209.2017.1285322
    CONTEXT: Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation.

    OBJECTIVES: This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time.

    MATERIALS AND METHODS: S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC50 values. GC-MS analysis was carried out on the n-hexane extract.

    RESULTS AND DISCUSSION: The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol.

    CONCLUSIONS: The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links