Displaying publications 61 - 80 of 170 in total

Abstract:
Sort:
  1. Nurazwa Ishak, Ahmad Firdaus Lajis, Rosfarizan Mohamad, Arbakariya Ariff, Murni Halim, Helmi Wasoh
    MyJurnal
    In this paper, the syntheses of kojic acid esters via chemical and enzymatic methods are
    reviewed. The advantages and disadvantages of chemical process in term of process, safety and
    efficiency are discussed. In enzymatic process, the significant process parameters related to the
    synthesis of kojic acid esters such as the lipases, solvent, temperature and water content are
    highlighted. Possible enzymatic synthesis using solvent and solvent-free system taking into
    consideration of the difference in these systems involving cost, lipase reusability and efficiency
    is comparatively reviewed. The possible approach for large scale production using various
    enzyme reactor designs is also discussed and re-evaluated.
    Matched MeSH terms: Esters
  2. Nur Azreena Idris, Loh SK, Choo YM, Boey PL
    The fractions of fatty acid methyl esters (FAME) i.e. crude palm oil methyl esters (CPOME), RBD palm olein methyl esters (RBD Palm Olein ME) and used frying oil methyl esters (UFOME) rich in unsaturated fatty esters were used to prepare alkenyl succinic anhydrides (ASA). The fractions were obtained via fractional distillation that separated the unsaturated fatty esters from the saturated fatty esters. The fractions with the highest content of unsaturated fatty esters were reacted with maleic anhydride (MA) for 8 hours at 240oC with the MA/FAME ratio of 1.5. The reaction was conducted without catalyst and solvent. The crude alkenyl succinic anhydride (ASA) obtained was purified by column chromatography. The purified compound was characterised by FTIR.
    Matched MeSH terms: Esters
  3. Nur Aimi, R., Abu Bakar, F., Dzulkifly, M.H.
    MyJurnal
    Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
    It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
    (15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.
    Matched MeSH terms: Esters
  4. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
    Matched MeSH terms: Esters/analysis*
  5. Nik Azmi NNA, Tan TC, Ang MY, Leong YH
    PMID: 36602442 DOI: 10.1080/19440049.2022.2163054
    The presence of 3-monochloropropanediol esters (3-MCPDE), 2-monochloropropanediol esters (2-MCPDE) and glycidyl esters (GE) in infant formula products has raised serious concerns. They incorporate vegetable oils, particularly palm-based oils, which are well-known to contain large amounts of these process contaminants. An analysis was conducted on infant formula samples (n = 16) obtained from the Malaysian market to determine the levels of 3-MCPDE, 2-MCPDE and GE using gas chromatography-mass spectrometry (GC-MS). The method was validated, with a limit of quantification (LOQ) on instrument of 0.10 µg/g for all analytes. The median concentrations of 3-MCPDE, 2-MCPDE and GE in infant formula in this study were 0.008 µg/g, 0.003 µg/g and 0.002 µg/g respectively. The estimated dietary intakes calculated from consumption of infant formula show higher exposures to infants within the age group of 0 to 5 months, highest for GE (1.61 µg/kg bw/day), followed by 3-MCPDE (0.68 µg/kg bw/day) and 2-MCPDE (0.41 µg/kg bw/day) compared to the age group of 6 to 12 months. Only one sample, relating to GE exposure is a potential risk for both age groups with MOE value below 25,000.
    Matched MeSH terms: Esters/analysis
  6. Ng TL, Karim R, Tan YS, Teh HF, Danial AD, Ho LS, et al.
    PLoS One, 2016;11(6):e0156714.
    PMID: 27258536 DOI: 10.1371/journal.pone.0156714
    Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites. For the five secondary metabolites analyzed (ie. panduratin, pinocembrin, pinostrobin, cardamonin and alpinetin), shoot base had the highest concentrations, followed by watery, dry and embryogenic calli. Furthermore, intracellular auxin levels were found to decrease from dry to watery calli, followed by shoot base and finally embryogenic calli. Our morphological observations showed the presence of fibrils on the cell surface of embryogenic callus while diphenylboric acid 2-aminoethylester staining indicated the presence of flavonoids in both dry and embryogenic calli. Periodic acid-Schiff staining showed that shoot base and dry and embryogenic calli contained starch reserves while none were found in watery callus. This study identified several primary metabolites that could be used as markers of embryogenic cells in B. rotunda, while secondary metabolite analysis indicated that biosynthesis pathways of these important metabolites may not be active in callus and embryogenic tissue.
    Matched MeSH terms: Esters/chemistry
  7. Ng SH, Woi PM, Basri M, Ismail Z
    J Nanobiotechnology, 2013;11:27.
    PMID: 24059593 DOI: 10.1186/1477-3155-11-27
    Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability.
    Matched MeSH terms: Esters/chemistry*
  8. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Sulfuric Acid Esters/chemistry*
  9. Nehdi IA, Sbihi HM, Blidi LE, Rashid U, Tan CP, Al-Resayes SI
    Protein Pept Lett, 2018;25(2):164-170.
    PMID: 28240158 DOI: 10.2174/0929866524666170223150839
    BACKGROUND: Biodiesel is a green fuel consisting of long chain fatty acid monoalkyl esters, which can be blended with diesel or used alone which is usually produced from vegetable oils/fats by either lipasecatalyzed transesterification. In this investigation, an enzyme (Novozym 435) catalyzed process was optimized to prepare methyl esters from crude Citrullus colocynthis oil (CCO) by transesterification of CCO with methanol. However, as per our knowledge, lipase-catalyzed transesterification have not been used for biodiesel production from Citrullus colocynthis.

    OBJECTIVE: The purpose of this work was to transesterify the CCO in the presence of Candida antarctica lipase as catalyst and methanol. Additionally, the physicochemical parameters/fuel properties of the Citrullus colocynthis methyl ester (CCME) were assessed and compared.

    METHODS: Lipase-catalyzed reactions were carried out in three necked flask (50 mL) attached with reflux condenser and thermometer, immersed in oil bath at constant stirring speed (400 rpm). The reaction mixture was consisted of CCO and varying the calculated amount of methanol, tert-butyl alcohol, and Novozym 435. The experimental parameters reaction time, methanol/oil molar ratio, reaction temperature, tert-butanol content, Novozym 435 content and water content were optimized for the transesterification reaction. The CCME yield was measured using gas chromatograph. The fuel properties of the produced CCME were determined as per American Society for Testing and Materials (ASTM) and European (EN) biodiesel standard methods.

    RESULTS: In this study, an enzymatic catalyst was employed to synthesize the CCME from CCO via transesterification. Several variables affecting the CCME yield were optimized as lipase quantity (4%), water content (0.5%), methanol/oil molar ratio (5:1), reaction temperature (43 °C), reaction medium composition (80% tertbutanol/ oil), and reaction time (3.7 h). A CCME yield of 97.8% was achieved using enzyme catalyzed transesterification of CCO under optimal conditions. The significant biodiesel fuel properties of CCME, i.e. cloud point (0.70 °C); cetane number (49.07); kinematic viscosity (2.27 mm2/s); flash point (143 °C); sulfur content (2 ppm) density (880 kg/m3) and acid value (0.076 mg KOH/g) were appraised. CCME also exhibited long-term storage stability (4.80 h) and all the biodiesel fuel properties were within the range of standards (ASTM D6751 and EN 14214).

    CONCLUSION: The lipase-catalyzed transesterification produced better conversion than the base-catalyzed reaction. The fuel properties of CCME were within the limits of the ASTM D6751 and EN14214 standards. Furthermore, CCME showed good oxidative stability and a long shelf life due its high natural antioxidant content. CCME showed better fuel properties and long-term storage stability due to which it can be used as a potential alternative fuel.

    Matched MeSH terms: Esters
  10. Naureen R, Tariq M, Yusoff I, Chowdhury AJ, Ashraf MA
    Saudi J Biol Sci, 2015 May;22(3):332-9.
    PMID: 25972756 DOI: 10.1016/j.sjbs.2014.11.017
    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR ((1)H and (13)C). The chemical composition of sunflower oil biodiesel was determined by GC-MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by (1)H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.
    Matched MeSH terms: Esters
  11. Najjar A, Abdullah N, Saad WZ, Ahmad S, Oskoueian E, Abas F, et al.
    Int J Mol Sci, 2014;15(2):2274-88.
    PMID: 24504029 DOI: 10.3390/ijms15022274
    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.
    Matched MeSH terms: Phorbol Esters/toxicity; Phorbol Esters/chemistry*
  12. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Ahmad MA
    3 Biotech, 2019 Aug;9(8):314.
    PMID: 31406636 DOI: 10.1007/s13205-019-1845-y
    Initially, a new moderate halophilic strain was locally isolated from seawater. The partial 16S rRNA sequence analysis positioned the organism in Marinobacter genus and was named 'Marinobacter litoralis SW-45'. This study further demonstrates successful utilization of the halophilic M. litoralis SW-45 lipase (MLL) for butyl ester synthesis from crude palm fruit oil (CPO) and kernel oil (CPKO) in heptane and solvent-free system, respectively, using hydroesterification. Hydrolysis and esterification of enzymatic [Thermomyces lanuginosus lipase (TLL)] hydrolysis of CPO and CPKO to free fatty acids (FFA) followed by MLL-catalytic esterification of the concentrated FFAs with butanol (acyl acceptor) to synthesize butyl esters were performed. A one-factor-at-a-time technique (OFAT) was used to study the influence of physicochemical factors on the esterification reaction. Under optimal esterification conditions of 40 and 45 °C, 150 and 230 rpm, 50% (v/v) biocatalyst concentration, 1:1 and 5:1 butanol:FFA, 9% and 15% (w/v) NaCl, 60 and 15 min reaction time for CPO- and CPKO-derived FFA esterification system, maximum ester conversion of 62.2% and 69.1%, respectively, was attained. Gas chromatography (GC) analysis confirmed the products formed as butyl esters. These results showed halophilic lipase has promising potential to be used for biosynthesis of butyl esters in oleochemical industry.
    Matched MeSH terms: Esters
  13. Musa H, Hafiz Kasim F, Nagoor Gunny AA, Gopinath SCB, Azmier Ahmad M
    J Basic Microbiol, 2019 Jan;59(1):87-100.
    PMID: 30270443 DOI: 10.1002/jobm.201800382
    An approach was made to enhance the halophilic lipase secretion by a newly isolated moderate halophilic Marinobacter litoralis SW-45, through the statistical optimization of Plackett-Burman (PB) experimental design and the Face Centered Central Composite Design (FCCCD). Initially, PB statistical design was used to screen the medium components and process parameters, while the One-factor-at-a-time technique was availed to find the optimum level of significant parameters. It was found that MgSO4  · 7H2 O, NaCl, agitation speed, FeSO4  · 7H2 O, yeast extract and KCl positively influence the halophilic lipase production, whereas temperature, carbon source (maltose), inducer (olive oil), inoculum size, and casein-peptone had a negative effect on enzyme production. The optimum level of halophilic lipase production was obtained at 3.0 g L-1 maltose, 1% (v/v) olive oil, 30 °C growth temperature and 4% inoculum volume (v/v). Further optimization by FCCCD was revealed 1.7 folds improvement in the halophilic lipase production from 0.603 U ml-1 to 1.0307 U ml-1 . Functional and biochemical characterizations displayed that the lipase was significantly active and stable in the pH ranges of 7.0-9.5, temperature (30-50 °C), and NaCl concentration (0-21%). The lipase was maximally active at pH 8.0, 12% (w/v) NaCl, and 50 °C temperature. Besides, M. litoralis SW-45 lipase was found to possess the promising industrial potential to be utilized as a biocatalyst for the esterification.
    Matched MeSH terms: Esters/metabolism*
  14. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Esters
  15. Muhammad KJ, Jamil S, Basar N, Sarker SD, Mohammed MG
    Nat Prod Res, 2020 Oct;34(19):2746-2753.
    PMID: 30931627 DOI: 10.1080/14786419.2019.1586693
    Phytochemical study was conducted on the leaves of Globimetula braunii which is a hemi parasitic plant belonging to the family Loranthaceae. Extraction was carried out using cold extraction method with increasing polarity of solvents i.e n-hexane, CH2Cl2 and MeOH. The components were separated by chromatographic technique and the structures of the compounds were elucidated by extensive spectroscopic analyses including MS, FTIR, 1D and 2D NMR, HRMS and chemical methods. Six new pentacyclic triterpenoid esters named as globrauneine A (1), globrauneine B (2), globrauneine C (3), globrauneine D (4), globrauneine E (5), and globrauneine F (6), together with six known compounds (7 - 12) were successfully isolated from the leaves of G. braunii growing on Piliostigma thonningii. These results depict a substantial support to the chemotaxonomy of the genus Globimetula.
    Matched MeSH terms: Esters
  16. Muhamad Rosli SH, Lau MS, Khalid T, Maarof SK, Jeyabalan S, Sirdar Ali S, et al.
    PMID: 36947708 DOI: 10.1080/19440049.2023.2183068
    3-Monochloropropane-1,2-diol esters (3-MCPDE) are food contaminants commonly found in refined vegetable oils and fats, which have possible carcinogenic implications in humans. To investigate this clinically, we conducted an occurrence level analysis on eight categories of retail and cooked food commonly consumed in Malaysia. This was used to estimate the daily exposure level, through a questionnaire-based case-control study involving 77 subjects with renal cancer, with 80 matching controls. Adjusted Odds Ratio (AOR) was calculated using the multiple logistic regression model adjusted for confounding factors. A pooled estimate of total 3-MCPDE intake per day was compared between both groups, to assess exposure and disease outcome. Among the food categories analysed, vegetable fats and oils recorded the highest occurrence levels (mean: 1.91 ± 1.90 mg/kg), significantly more than all other food categories (p 
    Matched MeSH terms: Esters/analysis
  17. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M
    Int J Pharm, 2018 Jul 30;546(1-2):31-38.
    PMID: 29751143 DOI: 10.1016/j.ijpharm.2018.05.021
    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.
    Matched MeSH terms: Esters
  18. Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH
    Talanta, 2014 Nov;129:505-15.
    PMID: 25127626 DOI: 10.1016/j.talanta.2014.06.019
    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis.
    Matched MeSH terms: Esters/chemistry
  19. Mohd. Sapuan Salit, Mohamed Abd. Rahman, Khalina Abdan
    MyJurnal
    Vinyl esters combine the best of polyesters and epoxies in terms of properties and processing. Without
    complicating presence of reinforcing fibres, this study investigated the effects of catalyst amount, preheating time, molding temperature, and pressure on flexural and water absorption properties of cast vinyl ester (VE) using a factorial experiment. Longer preheating time enhanced the stiffness of VE, while higher molding pressure reduced the flexural modulus. All the four factors did not affect the flexural strength and elongation at the break of molded VE significantly. Using a high molding pressure also caused molded VE to have higher water absorption for a long water exposure period. Meanwhile, greater water absorption at bigger amount of catalyst and higher preheating temperature indicate possible interactions between these factors. The results suggest possible negative effects of high molding pressure through the increase in the network of micro-cracks, and thus lowering the integrity of cast VE sheets. Judicious selection of the process parameters was required in order to obtain good quality molded VE sheets and by extension fibre-reinforced VE composites. Molded VE-unsaturated polyester (UP) blend is a significantly different material which is 1.49 times stronger, 2.38 times more flexible, but it is 0.69 less stiff than neat VE and with significantly higher water absorption. The results obtained warrant for a further investigation in process optimization of VE molding and the use of VE-UP blend as a matrix for natural fibre-reinforced composites.
    Matched MeSH terms: Esters; Polyesters
  20. Mohd Cairul Iqbal Mohd Amin, Fell, J.T.
    MyJurnal
    Polyvinyl chloride (PVC) and ammonio methacrylate copolymer (Eudragit RS 100) were used as models in binary mixture tablets of direct compression study. Eudragit RS 100 is a copolymer synthesized from acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. Combination of PVC and Eudragit RS 100 of different polarities and knowing the surface free energy values allow the possibility of predicting the tensile strength of the tablets. Specimens of 500 mg in the form of thin plates (25 mm x 12.5 mm), were made by compressing each powder at 20 000 MP a compression pressure using a special punch and die set. A Howden Universal Testing Machine was used to compress the powder. Contact angle measurements of the samples were carried out using a Wilhelmy balance, ran by a Cahn Dynamic Contact Angle Machine while different test liquids media such as water, glycerol, formamide and PEG 200 were used in the study. The surface free energy values of the solid materials were calculated using Wu's equation. The results showed large differences between the advancing and receding contact angle values for both materials when tested with glycerol: PVC (0) and PVC (0,) were 93.2 and 65.24 while Eudragit RS 100 (0) and Eudragit RS 100 (0) were 94.56 and 68.18 respectively. The surface free energy values for PVC using PEG 200-glycerol liquid pair were Is: 38.01, ysci: 33.42, ysP: 4.59 and for Eudragit RS 100 using formamide-glycerol liquid pair were ys: 75.03, yd: 51.66, ysP : 23.37, respectively. The results showed harder solid material like Eudragit RS 100 had higher surface free energy compared to elastic material like PVC.
    Matched MeSH terms: Esters
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links