Displaying publications 61 - 80 of 93 in total

Abstract:
Sort:
  1. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A
    J Toxicol Sci, 2010 Oct;35(5):663-71.
    PMID: 20930461
    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
    Matched MeSH terms: Ginger/chemistry*
  2. Tan BC, Tan SK, Wong SM, Ata N, Rahman NA, Khalid N
    PMID: 25883671 DOI: 10.1155/2015/451870
    The distribution patterns of flavonoids and cyclohexenyl chalcone derivatives in conventional propagated (CP) and in vitro-derived (CPA) field-grown plants of an important medicinal ginger, Boesenbergia rotunda, are described. A total of eight compounds were extracted from six organs (rootlet, rhizome, shoot base, maroon stem, stalk, and leaf) of the CP and CPA plants. Five major chromatographic peaks, namely, alpinetin, pinocembrin, pinostrobin, 4-hydroxypanduratin A, and panduratin A, were consistently observed by high performance liquid chromatography. Nonaerial organs had higher levels of flavonoids than the aerial ones for all types of samples. Among the compounds detected, pinostrobin and 4-hydroxypanduratin A were the most abundant flavonoid and cyclohexenyl chalcone derivative, respectively. The distribution and abundance of the bioactive compounds suggested that the shoot base could be more potentially useful for medicinal application than other organs of the plant and may be the site of storage or occurrence of biosynthetic enzymatic activities.
    Matched MeSH terms: Ginger
  3. Ali A, Hei GK, Keat YW
    J Food Sci Technol, 2016 Mar;53(3):1435-44.
    PMID: 27570268 DOI: 10.1007/s13197-015-2124-5
    Effect of 2.0 % ginger oil (GO) and 1.5 % ginger extract (GE) in combination with 10.0 % gum arabic (GA) was evaluated for the postharvest control of anthracnose and maintaining quality of Eksotika II papaya fruit during storage at 12 ± 1 °C and 80-85 % RH. Antifungal compounds present in GO and GE were analyzed using gas chromatography and GO was found to contain α-pinene, 1, 8-cineole and borneol, while only borneol was present in GE due to different extraction methods applied. The highest antifungal activity was shown in 2.0 % GO combined with 10 % GA, which significantly (P 
    Matched MeSH terms: Ginger
  4. Ghasemzadeh A, Jaafar HZ, Karimi E
    Int J Mol Sci, 2012 Nov 13;13(11):14828-44.
    PMID: 23203096 DOI: 10.3390/ijms131114828
    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar application of SA in a controlled environment and that the anticancer activity in young ginger extracts could be improved.
    Matched MeSH terms: Ginger/drug effects*; Ginger/metabolism*
  5. Haque MA, Jantan I
    Curr Pharm Biotechnol, 2017;18(9):696-720.
    PMID: 29141544 DOI: 10.2174/1389201018666171115115458
    BACKGROUND: Zingiber zerumbet (L.) Roscoe ex Sm. (family, Zingiberaceae) is a potent medicinal herb widely known as shampoo ginger and its rhizome is used in numerous ethnomedicinal applications including antipyretic, anti-inflammatory, antibacterial, anti-diarrheal, antidiabetics, carminative, and diuretic. The aim of this review was to bring together all the scientific updates on the phytochemistry and pharmacological activities of this herb, including their toxicological studies, and critically analyzed the outcomes to provide directions for future research on the herb as potential source of bioactive metabolites for pharmaceutical and nutraceutical applications.

    METHODS: A structured electronic search on worldwide accepted scientific databases (Web of Science, PubMed, Google Scholar, Science Direct, SciFinder, Wiley Online Library) was carried out to compile the relevant information. Some information was obtained from books and database on medicinal plants used in various countries.

    RESULTS: About 60 metabolites, mainly polyphenols, and terpenoids have been isolated and identified. However, most of the reported pharmacological studies were based on crude extracts, and only a few of those isolated metabolites, particularly zerumbone have been investigated for biological and pharmacological activities. Many of the mechanistic studies to understand the pharmacological effects of the plant are limited by many considerations with regard to design, experimentation and interpretation.

    CONCLUSION: The bioactive metabolites should be further investigated on their safety and more elaborate preclinical studies before clinical trials can be undertaken.

    Matched MeSH terms: Ginger/chemistry*
  6. Tang CT, Belani LK, Das S, Jaafar MZ
    Clin Ter, 2013;164(1):43-6.
    PMID: 23455743 DOI: 10.7417/T.2013.1511
    Dementia is a common symptom observed in many psychiatric and neurodegenerative diseases. Alzheimer's disease is the most common form of senile dementia seen in the general population. Multiple factors like oxidative stress, apoptosis, mitochondrial dysfunction and inflammation may be related to the neurodegenerative states. Many drugs like cholinesterase have been used for treatment but the progression of the disease still poses a challenge to the clinician. During recent times, herbs have gained much popularity as supplements because of the cost effectiveness, easy availability and fewer side effects. Early diagnosis and proper treatment may help in the prevention of mortality and morbidity concerned with any neurodegenerative disease. Understanding the cellular and molecular biology of the mode of the action of herbal products may be beneficial for researchers and clinicians. The present review article attempts to look into the potential herbal extracts which may act as an antioxidant in combating dementia.
    Matched MeSH terms: Ginger*
  7. Ghasemzadeh A, Jaafar HZ
    Int J Mol Sci, 2011 Feb 10;12(2):1101-14.
    PMID: 21541046 DOI: 10.3390/ijms12021101
    The effect of two different CO(2) concentrations (400 and 800 μmol mol(-1)) on the photosynthesis rate, primary and secondary metabolite syntheses and the antioxidant activities of the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. High photosynthesis rate (10.05 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (83.4 g in Halia Bentong) were observed at 800 μmol mol(-1) CO(2). Stomatal conductance decreased and water use efficiency increased with elevated CO(2) concentration. Total flavonoids (TF), total phenolics (TP), total soluble carbohydrates (TSC), starch and plant biomass increased significantly (P ≤ 0.05) in all parts of the ginger varieties under elevated CO(2) (800 μmol mol(-1)). The order of the TF and TP increment in the parts of the plant was rhizomes > stems > leaves. More specifically, Halia Bara had a greater increase of TF (2.05 mg/g dry weight) and TP (14.31 mg/g dry weight) compared to Halia Bentong (TF: 1.42 mg/g dry weight; TP: 9.11 mg/g dry weight) in average over the whole plant. Furthermore, plants with the highest rate of photosynthesis had the highest TSC and phenolics content. Significant differences between treatments and species were observed for TF and TP production. Correlation coefficient showed that TSC and TP content are positively correlated in both varieties. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased in young ginger grown under elevated CO(2). The FRAP values for the leaves, rhizomes and stems extracts of both varieties grown under two different CO(2) concentrations (400 and 800 μmol mol(-1)) were significantly lower than those of vitamin C (3107.28 μmol Fe (II)/g) and α-tocopherol (953 μmol Fe (II)/g), but higher than that of BHT (74.31 μmol Fe (II)/g). These results indicate that the plant biomass, primary and secondary metabolite synthesis, and following that, antioxidant activities of Malaysian young ginger varieties can be enhanced through controlled environment (CE) and CO(2) enrichment.
    Matched MeSH terms: Ginger/metabolism*
  8. Ghasemzadeh A, Jaafar HZ
    Molecules, 2013 May 21;18(5):5965-79.
    PMID: 23698049 DOI: 10.3390/molecules18055965
    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching.
    Matched MeSH terms: Ginger/enzymology*
  9. Kalantari K, Afifi AM, Moniri M, Moghaddam AB, Kalantari A, Izadiyan Z
    IET Nanobiotechnol, 2019 May;13(3):262-268.
    PMID: 31053688 DOI: 10.1049/iet-nbt.2018.5066
    In this study, the authors synthesised silver nanoparticles (AgNPs) using autoclave as a simple, unique and eco-friendly approach. The effect of Zingiber officinale extract was evaluated as a reducing and stabiliser agent. According to transmission electron microscopy results, the AgNPs were in the spherical shape with a particle size of ∼17 nm. The biomedical properties of AgNPs as antibacterial agents and free radical scavenging activity were estimated. Synthesised AgNPs showed significant 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging. Strong bactericidal activity was shown by the AgNPs on Gram-positive and Gram-negative bacteria. A maximum inhibition zone of ∼14 mm was obtained for epidermidis at a concentration of 60 μg/ml for sample fabricated at 24 h. The AgNPs also showed a significant cytotoxic effect against MCF-7 breast cancer cell lines with an half maximal inhibitory concentration value of 62 μg/ml in 24 h by the MTT assay. It could be concluded that Z. officinale extract can be used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial application.
    Matched MeSH terms: Ginger/chemistry*
  10. Sakai S, Kato M, Inoue T
    Am J Bot, 1999 May;86(5):646-58.
    PMID: 10330067
    The pollinators of 29 ginger species representing 11 genera in relation to certain floral morphological characteristics in a mixed-dipterocarp forest in Borneo were investigated. Among the 29 species studied, eight were pollinated by spiderhunters (Nectariniidae), 11 by medium-sized Amegilla bees (Anthophoridae), and ten by small halictid bees. These pollination guilds found in gingers in Sarawak are comparable to the pollination guilds of neotropical Zingiberales, i.e., hummingbird-, and euglossine-bee-pollinated guilds. Canonical discriminant analysis revealed that there were significant correlations between floral morphology and pollination guilds and suggests the importance of plant-pollinator interactions in the evolution of floral morphology. Most species in the three guilds were separated on the plot by the first and second canonical variables. Spiderhunter-pollinated flowers had longer floral tubes, while Amegilla-pollinated flowers had wider lips than the others, which function as a platform for the pollinators. Pistils and stamens of halictid-pollinated flowers were smaller than the others. The fact that gingers with diverse morphologies in a forest with high species diversity were grouped into only three pollination guilds and that the pollinators themselves showed low species diversity suggests that many species of rare understory plants have evolved without segregating pollinators in each pollination guild.
    Matched MeSH terms: Ginger
  11. Ghasemzadeh A, Jaafar HZ, Karimi E, Ibrahim MH
    BMC Complement Altern Med, 2012 Nov 23;12:229.
    PMID: 23176249 DOI: 10.1186/1472-6882-12-229
    BACKGROUND: The increase in atmospheric CO(2) concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO(2) enrichment (at two levels: 400 and 800 μmol·mol-1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara.

    METHODS: High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay.

    RESULTS: CO(2) levels of 800 μmol·mol-1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO(2) enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO(2) and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO(2) enrichment. Plants not treated with SA and kept under ambient CO(2) conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO(2) conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO(2) levels. As the level of CO(2) increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with SA and grown under high CO(2) conditions.

    CONCLUSIONS: The biological activities of both ginger varieties were enhanced when the plants were treated with SA and grown under elevated CO(2) concentration. The increase in the production of anthocyanin and flavonoids in plants treated with SA could be attributed to the increase in CHS activity under high CO(2) levels.

    Matched MeSH terms: Ginger/growth & development; Ginger/metabolism; Ginger/chemistry*
  12. Loke, Mi Mi, Chong, Kah Hui, Noor Salihah Zakaria, Hayati Mohd Yusof
    Malays J Nutr, 2017;23(2):227-238.
    MyJurnal
    Introduction: Chinese Herbal Medicine (CHM) is becoming increasingly popular among cancer patients worldwide. While health-related quality of life (HRQoL) in relation to cancer outcomes has attracted global attention, there are few studies on CHM use and HRQoL among cancer patients in Malaysia. This study attempted to determine the association between use of CHM, including the types, reasons, and beliefs, and HRQoL among Malaysian cancer patients.
    Methods: A cross-sectional study was conducted among 120 cancer patients (60 male and 60 female) recruited from government oncology clinics in Johor state. A purposive non-probability sampling was applied to recruit respondents.
    Results: Use of CHM was reported by about half of the patients (49.2%). Common types of CHM used included Chinese herbal extracts (27.5%), Sabah snake grass (12.2%), and ginger (11.5%). The median score for overall belief in CHM significantly differed between
    CHM users (71.7%) and non-users (65.0%) (p<0.001). The HRQoL was generally reported as ‘good’ with high scores for overall functioning scales and low scores for symptom scales. However, no significant difference in HRQoL between CHM users and non-users was noted. ‘Social Functioning’ scores between both groups showed a significant difference (p < 0.001) with respect to sex, with females scoring higher than males. No significant association was noted between CHM use and socio-demographic characteristics except for sex.
    Conclusion: There is a high prevalence of self-prescription of CHM among the cancer patients studied. Nonetheless use of CHM did not show any significant difference in terms of quality of life among CHM users.
    Study site: Oncology clinics, Hospital Sultan Ismail (Johor Bahru) and Hospital Sultanah Nora Ismail (Batu Pahat), Johor, Malaysia
    Matched MeSH terms: Ginger
  13. S J, Iqbal SZ, Talib NH, Hasnol ND
    J Food Sci Technol, 2016 Mar;53(3):1411-7.
    PMID: 27570265 DOI: 10.1007/s13197-015-2137-0
    The present study was focused to investigate the effect of selected spices (turmeric, torch ginger, lemongrass and curry leaves) on the formation of heterocyclic amines (HCAs, IQx, MeIQ, MeIQx, DiMeIQx, IQ, harman, norharman, and AαC) in deep fried lamb meat. Meat samples were marinated with optimized levels of turmeric (4 %), 10 % each of torch ginger, lemon grass, curry leaves at medium (70 °C) and well done (80 °C) doneness temperatures. The concentration of HCAs in deep fried meat samples were analysed using LC-MS/MS technique. The results revealed that torch ginger (10 %) has reduced 74.8 % of Me1Qx (1.39 to 0.35 ng/g) at medium doneness, followed by the 64.7 % reduction, using curry leaves and turmeric at medium degree of doneness. Torch ginger has reduced 86.6 % of AαC (2.59 to 0.40 ng/g) at well done doneness. The most prevalence level of HCAs was found in deep fried meat i.e. DiMeIQ (3.69 ng/g) at well done doneness. The sensory evaluation, using a 7 point hedonic test design for colour and texture in deep fried meat samples were resulted in a preferred color of golden brown and slightly tough texture. The use of local spices in marinating of deep fried lamb meat samples will certainly inhibit/reduce the level of these toxic and harmful HCAs.
    Matched MeSH terms: Ginger
  14. Ng TL, Karim R, Tan YS, Teh HF, Danial AD, Ho LS, et al.
    PLoS One, 2016;11(6):e0156714.
    PMID: 27258536 DOI: 10.1371/journal.pone.0156714
    Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites. For the five secondary metabolites analyzed (ie. panduratin, pinocembrin, pinostrobin, cardamonin and alpinetin), shoot base had the highest concentrations, followed by watery, dry and embryogenic calli. Furthermore, intracellular auxin levels were found to decrease from dry to watery calli, followed by shoot base and finally embryogenic calli. Our morphological observations showed the presence of fibrils on the cell surface of embryogenic callus while diphenylboric acid 2-aminoethylester staining indicated the presence of flavonoids in both dry and embryogenic calli. Periodic acid-Schiff staining showed that shoot base and dry and embryogenic calli contained starch reserves while none were found in watery callus. This study identified several primary metabolites that could be used as markers of embryogenic cells in B. rotunda, while secondary metabolite analysis indicated that biosynthesis pathways of these important metabolites may not be active in callus and embryogenic tissue.
    Matched MeSH terms: Ginger/embryology*; Ginger/metabolism*
  15. Abu Bakar Sajak A, Azlan A, Abas F, Hamzah H
    Nutrients, 2021 Oct 12;13(10).
    PMID: 34684574 DOI: 10.3390/nu13103573
    An herbal mixture composed of lemon, apple cider, garlic, ginger and honey as a polyphenol-rich mixture (PRM) has been reported to contain hypolipidemic activity on human subjects and hyperlipidemic rats. However, the therapeutic effects of PRM on metabolites are not clearly understood. Therefore, this study aimed to provide new information on the causal impact of PRM on the endogenous metabolites, pathways and serum biochemistry. Serum samples of hyperlipidemic rats treated with PRM were subjected to biochemistry (lipid and liver profile) and hydroxymethylglutaryl-CoA enzyme reductase (HMG-CoA reductase) analyses. In contrast, the urine samples were subjected to urine metabolomics using 1H NMR. The serum biochemistry revealed that PRM at 500 mg/kg (PRM-H) managed to lower the total cholesterol level and low-density lipoprotein (LDL-C) (p < 0.05) and reduce the HMG-CoA reductase activity. The pathway analysis from urine metabolomics reveals that PRM-H altered 17 pathways, with the TCA cycle having the highest impact (0.26). Results also showed the relationship between the serum biochemistry of LDL-C and HMG-CoA reductase and urine metabolites (trimethylamine-N-oxide, dimethylglycine, allantoin and succinate). The study's findings demonstrated the potential of PRM at 500 mg/kg as an anti-hyperlipidemic by altering the TCA cycle, inhibiting HMG-CoA reductase and lowering the LDL-C in high cholesterol rats.
    Matched MeSH terms: Ginger/chemistry*
  16. Ghasemzadeh A, Jaafar HZ, Rahmat A, Wahab PE, Halim MR
    Int J Mol Sci, 2010 Oct 12;11(10):3885-97.
    PMID: 21152306 DOI: 10.3390/ijms11103885
    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m(-2)s(-1)) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m(-2)s(-1) and TP was high in this variety under a light intensity of 790 μmol m(-2)s(-1). The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m(-2)s(-1). The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m(-2)s(-1) of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.
    Matched MeSH terms: Ginger/metabolism; Ginger/radiation effects*
  17. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Ginger
  18. Sepahpour S, Selamat J, Khatib A, Manap MYA, Abdull Razis AF, Hajeb P
    PMID: 29913103 DOI: 10.1080/19440049.2018.1488085
    Natural antioxidants in spices and herbs have attracted considerable attention as potential inhibitors against the formation of mutagenic heterocyclic amines (HCAs) in heat-processed meat. In this study, the inhibitory activity of four spices/herbs and their mixtures on HCAs formation in grilled beef were examined. A simplex centroid mixture design with four components comprising turmeric, curry leaf, torch ginger and lemon grass in 19 different proportions were applied on beef samples before grilling at 240 ºC for 10 min. The HCAs were extracted from the samples using solid phase extraction (SPE) method and analysed using Liquid chromatography mass spectrometry LC-MS/MS. All spices/herbs in single or mixture forms were found to reduce total HCA concentrations in marinated grilled beef ranging from 21.2% for beef marinated with curry leaf to 94.7% for the combination of turmeric and lemon grass (50:50 w/w). At the optimum marinade formula (turmeric: lemon grass 52.4%: 47.6%), concentration of 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), Harman, Norharman and AαC were 2.2, 1.4, 0.5, 2.8 and 1.2 ng/g, respectively. The results of the mutagenic activity demonstrated that this optimised marinade formula significantly (p 
    Matched MeSH terms: Ginger
  19. Mohammad A, Falahi E, Mohd Yusof BN, Hanipah ZN, Sabran MR, Mohamad Yusof L, et al.
    Clin Nutr ESPEN, 2021 Dec;46:66-72.
    PMID: 34857250 DOI: 10.1016/j.clnesp.2021.10.013
    OBJECTIVES: The effect of ginger supplements on inflammatory biomarkers and oxidative stress in patients with type 2 diabetes (T2DM) has been investigated, but findings are inconsistent. This systematic review and meta-analysis were conducted to determine the effects of ginger supplementation on inflammatory parameters (high-sensitivity C-reactive protein [hs-CRP], tumour necrosis factor-alpha [TNF-α], and interleukin-6 [IL-6]) in patients with T2DM.

    METHODS: We performed a systematic search using PubMed, Scopus, Cochrane Library, Web of Science for randomised controlled trials (RCTs), published until March 17, 2021. The quality assessment was carried out using the Cochrane Collaboration risk of bias tool. The Q-test and I 2 tests were used for the determination of heterogeneity of the included studies. Data were pooled using a random-effects model, and weighted mean difference (WMD) was used for the overall effect size.

    RESULTS: Pooled findings of the five RCTs demonstrated that ginger supplementations had significantly reduced hs-CRP (WMD -0.42 mg/L; 95% CI, -0.78, -0.05, P = 0.03), TNF-α (-2.13 pg/mL; 95% CI: -3.41, -0.86, P = 0.001), and IL-6 (WMD: -0.61 pg/mL; 95% CI: -0.92, -0.30, P = 0.001) levels in patients with T2DM. The quality assessment of the studies showed that all of the included studies were at high risk of bias.

    CONCLUSIONS: The meta-analysis shows that ginger supplementations reduced inflammatory parameters in patients with T2DM. Nonetheless, the reduction is relatively small, and its meaningful clinical effects are unknown. Future high-quality RCTs are needed to confirm the beneficial effects of ginger supplementation in patients with T2DM.

    Matched MeSH terms: Ginger*
  20. Nafi’, A., Foo, H.L., Jamilah, B., Ghazali. H.M.
    MyJurnal
    Proteases in ginger rhizome have the potentials in industrial applications. This study was conducted to extract and characterize the proteolytic enzyme from ginger (Zingiber officinale Roscoe). Ginger protease (GP) was extracted from ginger rhizome by homogenization with 100 mM potassium phosphate buffer pH 7.0 containing 10 mM cysteine and 5 mM EDTA which were found to be the most efficient extraction buffer and stabilizers. After centrifugation at 10,500 x g, protein in the crude extract was precipitated using 60% ammonium sulfate following which the precipitate was redissolved in 50 mM potassium phosphate buffer pH 7.0, dialyzed and then lyophilized. The extraction method yielded 0.94% (w/w of fresh weight) of GP with a specific activity of 27.6 ± 0.1 Unit/mg protein where 1 Unit is defined as the amount of protease causing an increase in absorbance by 1 unit per minute using azocasein as the substrate. Results show that the GP was completely inhibited by heavy metal cations i.e. Cu2+and Hg2+, and a thiol blocking agent or inhibitor, n-ethyl maleimide (NEM), indicating that GP is most probably a cysteine protease. The enzyme has an optimum temperature at 60⁰C and the optimum pH ranged between pH 6 to 8. Monovalent cations (K+ and Na+) have no significant effect on activity of GP, but divalent and trivalent cations showed moderate inhibitory effect. Detergents such as sodium dodecyl sulfate increased the activity of GP while Tween 80 and Tween 20 slightly reduced the activity.
    Matched MeSH terms: Ginger
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links