Displaying publications 61 - 80 of 146 in total

Abstract:
Sort:
  1. Samanthi P, Mohd Puad A, Suhaimi N, Kumar S, Nor Aini A
    Sains Malaysiana, 2013;42:1505-1510.
    Kenaf (Hibiscus cannabinus L.) is a versatile plant with multiuse ranging from animal feed to a wide variety of biocomposite products such as pulp and paper and fibre reinforce plastic. Therefore genetically improved planting materials are needed to tailor made requirement of the industry. Thus, development of plant regeneration through callus is important for in vitro genetic manipulation of kenaf. Currently development of successful genetic transformation of kenaf is through in planta transformation means. In vitro shoot regeneration was conducted using leaf explants from varieties V36 and G4 treated to three different combinations of N6 Benzyl adenine (BA) and Indole-3-butyric acid (IBA). High percentage of healthy callus induction was produced in MS medium supplemented with combination of 1.5 mgL-1 BA and 0.5 mgL-1 IBA. In addition 68.7% plant regeneration was obtained in MS medium supplemented with 0.3 mgL-1 GA3. All plantlets produced roots in hormone free medium. There was no significant difference among varieties in terms of callus induction (number of callus) and plant regeneration (number of plantlets). This protocol is useful to be used for the development of gene transformation protocol of kenaf through callus.
    Matched MeSH terms: Indoles
  2. Nazir M, Abbasi MA, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2585-2597.
    PMID: 31969290
    In the study presented here, the nucleophilic substitution reaction of 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazol-2-ylhydrosulfide was carried out with different alkyl/aralkyl halides (5a-r) to form its different S-substituted derivatives (6a-r), as depicted in scheme 1. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR and CHN analysis data. Bacterial biofilm inhibitory activity of all the synthesized compounds was carried out against Bacillus subtilis and Escherichia coli. The anticancer activity of these molecules was ascertained using anti-proliferation (SRB) assay on HCT 116 Colon Cancer Cell lines while the cytotoxicity of these molecules was profiled for their haemolytic potential. From this investigation it was rational that most of the compounds exhibited suitable antibacterial and anticancer potential along with a temperate cytotoxicity.
    Matched MeSH terms: Indoles/adverse effects; Indoles/chemical synthesis*; Indoles/therapeutic use
  3. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Indoles/chemical synthesis*; Indoles/pharmacology*; Indoles/chemistry
  4. Sun Y, Zhang M, Ou Z, Meng Y, Chen Y, Lin R, et al.
    Eur Respir J, 2022 Nov;60(5).
    PMID: 35618276 DOI: 10.1183/13993003.00260-2022
    BACKGROUND: Indoor microbial exposure is associated with asthma, but the health effects of indoor metabolites and chemicals have not been comprehensively assessed.

    METHODS: We collected classroom dust from 24 junior high schools in three geographically distanced areas in Malaysia (Johor Bahru, Terengganu and Penang), and conducted culture-independent high-throughput microbiome and untargeted metabolomics/chemical profiling.

    RESULTS: 1290 students were surveyed for asthma symptoms (wheeze). In each centre, we found significant variation in the prevalence of wheeze among schools, which could be explained by personal characteristics and air pollutants. Large-scale microbial variations were observed between the three centres; the potential protective bacteria were mainly from phyla Actinobacteria in Johor Bahru, Cyanobacteria in Terengganu and Proteobacteria in Penang. In total, 2633 metabolites and chemicals were characterised. Many metabolites were enriched in low-wheeze schools, including plant secondary metabolites flavonoids/isoflavonoids (isoliquiritigenin, formononetin, astragalin), indole and derivatives (indole, serotonin, 1H-indole-3-carboxaldehyde), and others (biotin, chavicol). A neural network analysis showed that the indole derivatives were co-occurring with the potential protective microbial taxa, including Actinomycetospora, Fischerella and Truepera, suggesting these microorganisms may pose health effects by releasing indole metabolites. A few synthetic chemicals were enriched in high-wheeze schools, including pesticides (2(3H)-benzothiazolethione), fragrances (2-aminobenzoic acid, isovaleric acid), detergents and plastics (phthalic acid), and industrial materials (4,4-sulfonyldiphenol).

    CONCLUSIONS: This is the first association study between high-throughput indoor chemical profiling and asthma symptoms. The consistent results from the three centres indicate that indoor metabolites/chemicals could be a better indicator than the indoor microbiome for environmental and health assessments, providing new insights for asthma prediction, prevention and control.

    Matched MeSH terms: Indoles
  5. Taha M, Ismail S, Imran S, Almandil NB, Alomari M, Rahim F, et al.
    J Biomol Struct Dyn, 2022 Nov;40(18):8232-8247.
    PMID: 33860726 DOI: 10.1080/07391102.2021.1910072
    In search of potent urease inhibitor indole analogues (1-22) were synthesized and evaluated for their urease inhibitory potential. All analogues (1-22) showed a variable degree of inhibitory interaction potential having IC50 value ranging between 0.60 ± 0.05 to 30.90 ± 0.90 µM when compared with standard thiourea having IC50 value 21.86 ± 0.90 µM. Among the synthesized analogues, the compounds 1, 2, 3, 5, 6, 8, 12, 14, 18, 20 and 22 having IC50 value 3.10 ± 0.10, 1.20 ± 0.10, 4.60 ± 0.10, 0.60 ± 0.05, 5.30 ± 0.20, 2.50 ± 0.10, 7.50 ± 0.20, 3.90 ± 0.10, 3.90 ± 0.10, 2.30 ± 0.05 and 0.90 ± 0.05 µM respectively were found many fold better than the standard thiourea. All other analogues showed better urease interaction inhibition. Structure activity relationship (SAR) has been established for all analogues containing different substituents on the phenyl ring. To understand the binding interaction of most active analogues with enzyme active site docking study were performed.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Indoles
  6. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5164-5180.
    PMID: 28361404 DOI: 10.1007/s11356-017-8855-2
    Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
    Matched MeSH terms: Indoles/isolation & purification; Indoles/pharmacology*; Indoles/toxicity
  7. Rozali SE, Rashid KA, Taha RM
    ScientificWorldJournal, 2014;2014:457092.
    PMID: 25136669 DOI: 10.1155/2014/457092
    A successful protocol was established for micropropagation in two selected varieties of exotic ornamental plants, Calathea crotalifera. The effects of different sterilization techniques, explant type, and the combination and concentration of plant growth regulators on shoots induction were studied. The axillary shoot buds explants sprouted from rhizomes in soil free conditions showed high induction rate of shoots with lowest contamination percentage when treated with combination of 30% (v/v) NaOCl, 70% (v/v) ethanol, and 0.3% (w/v) HgCl2. In the present study, the highest number of multiple shoots was obtained in MS basal medium supplemented with 3.5 mg/L 6-Benzylaminopurine (BAP), 1.0 mg/L 1-Naphthaleneacetic acid (NAA), 3% sucrose, and 6 g/L plant agar for both varieties and was used as multiplication medium. Microshoots were highly induced when the young shoot bud explants were incised longitudinally prior subculture. Chlorophyll analysis was studied to test the effects of activated charcoal and L-glutamine on reduction of necrosis problem. The maximum roots induction was recorded on MS medium supplemented with 1.0 mg/L 1-Naphthaleneacetic acid (NAA) compared to indolebutyric acid (IBA). The complete regenerated plantlets were successfully acclimatized in the soilless medium under greenhouse condition. This is the first report of rapid mass propagation for C. crotalifera.
    Matched MeSH terms: Indoles/pharmacology
  8. Chin Y, Lim SH, Zorlu Y, Ahsen V, Kiew LV, Chung LY, et al.
    PLoS One, 2014;9(5):e97894.
    PMID: 24840576 DOI: 10.1371/journal.pone.0097894
    Phthalocyanines are excellent photosensitizers for photodynamic therapy as they have strong absorbance in the near infra-red region which is most relevant for in vivo activation in deeper tissular regions. However, most phthalocyanines present two major challenges, ie, a strong tendency to aggregate and low water-solubility, limiting their effective usage clinically. In the present study, we evaluated the potential enhancement capability of glycerol substitution on the photodynamic properties of zinc (II) phthalocyanines (ZnPc). Three glycerol substituted ZnPc, 1-3, (tetra peripherally, tetra non-peripherally and mono iodinated tri non-peripherally respectively) were evaluated in terms of their spectroscopic properties, rate of singlet oxygen generation, partition coefficient (log P), intracellular uptake, photo-induced cytotoxicity and vascular occlusion efficiency. Tetrasulfonated ZnPc (ZnPcS4) was included as a reference compound. Here, we showed that 1-3 exhibited 10-100 nm red-shifted absorption peaks with higher molar absorptivity, and at least two-fold greater singlet oxygen generation rates compared to ZnPcS4. Meanwhile, phthalocyanines 1 and 2 showed more hydrophilic log P values than 3 consistent with the number of glycerol attachments but 3 was most readily taken up by cells compared to the rest. Both phthalocyanines 2 and 3 exhibited potent phototoxicity against MCF-7, HCT-116 and HSC-2 cancer cell-lines with IC50 ranging 2.8-3.2 µM and 0.04-0.06 µM respectively, while 1 and ZnPcS4 (up to 100 µM) failed to yield determinable IC50 values. In terms of vascular occlusion efficiency, phthalocyanine 3 showed better effects than 2 by causing total occlusion of vessels with diameter <70 µm of the chorioallantoic membrane. Meanwhile, no detectable vascular occlusion was observed for ZnPcS4 with treatment under similar experimental conditions. These findings provide evidence that glycerol substitution, in particular in structures 2 and 3, is able to improve the photodynamic properties of ZnPc.
    Matched MeSH terms: Indoles/chemistry*
  9. Kee CH, Ariffin A, Awang K, Noorbatcha I, Takeya K, Morita H, et al.
    Molecules, 2011 Aug 25;16(9):7267-87.
    PMID: 21869754 DOI: 10.3390/molecules16097267
    The n-butyramido, isobutyramido, benzamido, and furancarboxamido functions profoundly modulate the electronics of the stilbene olefinic and NH groups and the corresponding radical cations in ways that influence the efficiency of the cyclization due presumably to conformational and stereoelectronic factors. For example, isobutyramido- stilbene undergoes FeCl(3) promoted cyclization to produce only indoline, while n-butyramidostilbene, under the same conditions, produces both indoline and bisindoline.
    Matched MeSH terms: Indoles/chemical synthesis
  10. Khaledi H, Olmstead MM, Ali HM, Thomas NF
    Inorg Chem, 2013 Feb 18;52(4):1926-41.
    PMID: 23363432 DOI: 10.1021/ic302150j
    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].
    Matched MeSH terms: Indoles/chemistry*
  11. Mohd Daud N, Saeful Bahri IF, Nik Malek NA, Hermawan H, Saidin S
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:130-9.
    PMID: 27153117 DOI: 10.1016/j.colsurfb.2016.04.046
    Chlorhexidine (CHX) is known for its high antibacterial substantivity and is suitable for use to bio-inert medical devices due to its long-term antibacterial efficacy. However, CHX molecules require a crosslinking film to be stably immobilized on bio-inert metal surfaces. Therefore, polydopamine (PDA) was utilized in this study to immobilize CHX on the surface of 316L type stainless steel (SS316L). The SS316L disks were pre-treated, modified with PDA film and immobilized with different concentrations of CHX (10mM-50mM). The disks were then subjected to various surface characterization analyses (ATR-FTIR, XPS, ToF-SIMS, SEM and contact angle measurement) and tested for their cytocompatibility with human skin fibroblast (HSF) cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results demonstrated the formation of a thin PDA film on the SS316L surface, which acted as a crosslinking medium between the metal and CHX. CHX was immobilized via a reduction process that covalently linked the CHX molecules with the functional group of PDA. The immobilization of CHX increased the hydrophobicity of the disk surfaces. Despite this property, a low concentration of CHX optimized the viability of HSF cells without disrupting the morphology of adherent cells. The immobilized disks also demonstrated high antibacterial efficacy against both bacteria, even at a low concentration of CHX. This study demonstrates a strong beneficial effect of the crosslinked PDA film in immobilizing CHX on bio-inert metal, and these materials are applicable in medical devices. Specifically, the coating will restrain bacterial proliferation without suffocating nearby tissues.
    Matched MeSH terms: Indoles/chemistry*
  12. Husain K, Jantan I, Kamaruddin N, Said IM, Aimi N, Takayama H
    Phytochemistry, 2001 Jun;57(4):603-6.
    PMID: 11394866
    Three new indole alkaloids with methyl chanofruticosinates skeletal system, viz., methyl 12-methoxy-N1-decarbomethoxychanofruticosinate, methyl 12-methoxychanofruticosinate and methyl 11,12-dimethoxychanofruticosinate, in addition to methyl 11,12-methylenedioxy-N1-decarbomethoxychanofruticosinate, have been isolated from the leaves of Kopsia flavida Blume. The structures of these three new indole alkaloids were assigned by NMR spectral data using various 2D-techniques.
    Matched MeSH terms: Indoles/chemistry*
  13. Solberg T, Nesbakken T
    Nord Vet Med, 1981 Sep-Nov;33(9-11):446-53.
    PMID: 7329786
    The content of indole and the pH have been determined post mortem in shrimps (Pandalus borealis) caught in the Barents Sea and in shrimps caught outside Malaysia, India and Taiwan. These two criteria were compared with organoleptic assessment and the contents of volatile nitrogen bases (ammonia, trimethylamine) and living bacteria. For shrimps caught in the Barents Sea, both raw shrimps stored in ice and processed (broiled, peeled and single-frozen) shrimps were investigated. The results showed that only low levels of indole had been formed during ice-storage. Not until an advanced state of spoilage could a distinct increase in the indole content in raw and in boiled, peeled shrimps be discerned. pH increased slowly and varied in the area between acceptable and not acceptable quality. Neither the indole content nor the pH seems therefore to be a useful criterion for quality assessment either of raw shrimps caught in the Barents Sea or of such shrimps after processing (boiling and peeling). Most of the samples of boiled, peeled shrimps from the Far East were assessed organoleptically as less good-spoiled, and bacterial growth was significant. The content of trimethylamine oxide and volatile nitrogen was low, while the content of indole was high and exceeded 25 microgram/100 g in 8 or 14 samples. This is the upper limit for import in USA. The content of indole seems to be an important quality criterion for shrimps caught in warmer countries. The content of indole exceeded 25 microgram/100 g in some samples which were assessed organoleptically as acceptable. The pH was lower in brine-treated shrimps than in the others.
    Matched MeSH terms: Indoles/analysis*
  14. Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, et al.
    Nanomedicine, 2017 05;13(4):1447-1458.
    PMID: 28214608 DOI: 10.1016/j.nano.2017.02.002
    In photodynamic therapy (PDT), the low absorptivity of photosensitizers in an aqueous environment reduces singlet oxygen generation efficiency and thereby decreases photosensitizing efficacy in biological conditions. To circumvent this problem, we designed a phthalocyanine-poly-L-glutamic acid conjugate (1-PG) made from a new phthalocyanine (Pc 1) monofunctionalized to allow adequate conjugation to PGA. The resulting 1-PG conjugate retained high absorptivity in the near-infrared (NIR) region at its λmax675nm in an aqueous environment. The 1-PG conjugate demonstrated good singlet oxygen generation efficiency, increased uptake by 4 T1 breast cancer cells via clathrin-mediated endocytosis, and enhanced photocytotoxic efficacy. The conjugate also displayed a high light-dark toxicity ratio, approximately 1.5-fold greater than zinc phthalocyanine at higher concentration (10 μM), an important feature for the reduction of dark toxicity and unwanted side effects. These results suggest that the 1-PG conjugate could be a useful alternative for deep tissue treatment with enhanced anti-cancer (PDT) efficacy.
    Matched MeSH terms: Indoles/chemistry*
  15. Chong YM, How KY, Yin WF, Chan KG
    Molecules, 2018 04 21;23(4).
    PMID: 29690523 DOI: 10.3390/molecules23040972
    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P.aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts also inhibited violacein production in C.violaceum CV026 up to 50% while bioluminescence activities were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.
    Matched MeSH terms: Indoles/chemistry
  16. Mohd Daud N, Hussein Al-Ashwal R, Abdul Kadir MR, Saidin S
    Ann. Anat., 2018 Nov;220:29-37.
    PMID: 30048761 DOI: 10.1016/j.aanat.2018.06.009
    Immobilization of chlorhexidine (CHX) on stainless steel 316L (SS316L), assisted by a polydopamine film as an intermediate layer is projected as an approach in combating infection while aiding bone regeneration for coating development on orthopedic and dental implants. This study aimed to investigate the ability of CHX coating to promote apatite layer, osteoblast cells viability, adhesion, osteogenic differentiation and mineralization. Stainless steel 316L disks were pre-treated, grafted with a polydopamine film and immobilized with different concentrations of CHX (10-30mM). The apatite layer formation was determined through an in vitro simulated body fluid (SBF) test by ATR-FTIR and SEM-EDX analyses. The osteoblastic evaluations including cells viability, cells adhesion, osteogenic differentiation and mineralization were assessed with human fetal osteoblast cells through MTT assay, morphology evaluation under FESEM, ALP enzyme activity and Alizarin Red S assay. The apatite layer was successfully formed on the CHX coated disks, demonstrating potential excellent bioactivity property. The CHX coatings were biocompatible with the osteoblast cells at low CHX concentration (<20mM) with good adhesion on the metal surfaces. The increment of ALP activity and calcium deposition testified that the CHX coated disks able to support osteoblastic maturation and mineralization. These capabilities give a promising value to the CHX coating to be implied in bone regeneration area.
    Matched MeSH terms: Indoles/chemistry*
  17. Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, et al.
    Acta Diabetol, 2019 May;56(5):493-500.
    PMID: 30903435 DOI: 10.1007/s00592-019-01312-x
    The human gut is a home for more than 100 trillion bacteria, far more than all other microbial populations resident on the body's surface. The human gut microbiome is considered as a microbial organ symbiotically operating within the host. It is a collection of different cell lineages that are capable of communicating with each other and the host and has an ability to undergo self-replication for its repair and maintenance. As the gut microbiota is involved in many host processes including growth and development, an imbalance in its ecological composition may lead to disease and dysfunction in the human. Gut microbial degradation of nutrients produces bioactive metabolites that bind target receptors, activating signalling cascades, and modulating host metabolism. This review covers current findings on the nutritional and pharmacological roles of selective gut microbial metabolites, short-chain fatty acids, methylamines and indoles, as well as discussing nutritional interventions to modulate the microbiome.
    Matched MeSH terms: Indoles/administration & dosage*
  18. Zhang R, Suwanarusk R, Malleret B, Cooke BM, Nosten F, Lau YL, et al.
    J Infect Dis, 2016 Jan 1;213(1):100-4.
    PMID: 26136472 DOI: 10.1093/infdis/jiv358
    Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with malaria parasites by the spiroindolone KAE609. Here, we show that ring-stage parasite-infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the parasite's sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax- and Plasmodium falciparum-infected RBCs.
    Matched MeSH terms: Indoles/pharmacology*
  19. Tapsir Z, Jamaludin FH, Pingguan-Murphy B, Saidin S
    J Biomater Appl, 2018 02;32(7):987-995.
    PMID: 29187035 DOI: 10.1177/0885328217744081
    The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
    Matched MeSH terms: Indoles/chemistry*
  20. Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, et al.
    Proc Natl Acad Sci U S A, 2021 Jul 06;118(27).
    PMID: 34210797 DOI: 10.1073/pnas.2021091118
    While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR-/-) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR-mediated signaling pathway elevated the expression of β-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.
    Matched MeSH terms: Indoles/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links