Displaying publications 61 - 80 of 249 in total

Abstract:
Sort:
  1. Farooq SM, Boppana NB, Devarajan A, Asokan D, Sekaran SD, Shankar EM, et al.
    PLoS One, 2014;9(4):e93056.
    PMID: 24691130 DOI: 10.1371/journal.pone.0093056
    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  2. Khalil MI, Tanvir EM, Afroz R, Sulaiman SA, Gan SH
    Biomed Res Int, 2015;2015:286051.
    PMID: 26064893 DOI: 10.1155/2015/286051
    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  3. Kamisah Y, Periyah V, Lee KT, Noor-Izwan N, Nurul-Hamizah A, Nurul-Iman BS, et al.
    Pharm Biol, 2015;53(9):1243-9.
    PMID: 25853965 DOI: 10.3109/13880209.2014.971383
    Virgin coconut oil (VCO) contains high antioxidant activity which may have protective effects on the heart in hypertensive rats.
    Matched MeSH terms: Lipid Peroxidation
  4. Haleagrahara N, Varkkey J, Chakravarthi S
    Int J Mol Sci, 2011;12(10):7100-13.
    PMID: 22072938 DOI: 10.3390/ijms12107100
    The aim of the present study was to look into the possible protective effects of glycyrrhizic acid (GA) against isoproterenol-induced acute myocardial infarction in Sprague-Dawley rats. The effect of three doses of glycyrrhizic acid in response to isoproterenol (ISO)-induced changes in 8-isoprostane, lipid hydroperoxides, super oxide dismutase and total glutathione were evaluated. Male Sprague-Dawley rats were divided into control, ISO-control, glycyrrhizic acid alone (in three doses-5, 10 and 20 mg/kg BW) and ISO with glycyrrhizic acid (in three doses) groups. ISO was administered at 85 mg/kg BW at two consecutive days and glycyrrhizic acid was administered intraperitoneally for 14 days. There was a significant increase in 8-isoprostane (IP) and lipid hydroperoxide (LPO) level in ISO-control group. A significant decrease in total superoxide dismutase (SOD) and total glutathione (GSH) was seen with ISO-induced acute myocardial infarction. Treatment with GA significantly increased SOD and GSH levels and decreased myocardial LPO and IP levels. Histopathologically, severe myocardial necrosis and nuclear pyknosis and hypertrophy were seen in ISO-control group, which was significantly reduced with GA treatment. Gycyrrhizic acid treatment proved to be effective against isoproterenol-induced acute myocardial infarction in rats and GA acts as a powerful antioxidant and reduces the myocardial lipid hydroperoxide and 8-isoprostane level.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  5. Giribabu N, Srinivasarao N, Swapna Rekha S, Muniandy S, Salleh N
    PMID: 25161691 DOI: 10.1155/2014/592062
    Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na(+)/K(+)-, Ca(2+)- and Mg(2+)-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.
    Matched MeSH terms: Lipid Peroxidation
  6. Palur, Ravikant
    Medical Health Reviews, 2009;2009(1):15-42.
    MyJurnal
    The brain is considered the most eloquent organ in the human body as its activities impacts on all other systems. Though protected physically (in a bony covering), physiologically through the blood-CSF barrier (from invading organisms and toxins) and hemodynamically through the phenomenon of cerebral autoregulation; the brain is open to insults of various kinds which can critically damage this structure. Intracellular Ca++ accumulation, excessive activation of excitatory amino acid receptors, lipid peroxidation and free radical releaserelated damage are but a few of the pathological processes that occur at the neuronal level leading to damage. The mechanism by which the brain can be provided protection when it is in a compromised state or likely to be compromised is known as cerebral protection. There are various modalities of pharmacologic (use of barbiturates, etomidate, isoflurane, steroids, Ca++, corticosteroids etc) and non-pharmacologic therapies (hypothermia, hyperventilation, induced hypotension, electrophysiologic monitoring, endovascular management etc) available for cerebral protection which finds place in the armamentarium of clinicians managing the critically injured brain. Our knowledge of the functioning of the brain at the molecular level and the various biochemico-pathological processes that are set into motion during critical states continues to evolve. This review article attempts to explain present understanding of the biochemical and pathological processes involved in neuronal damage while also looking at current available therapies (pharmacologic & nonpharmacologic) being utilized in different clinical settings.
    Matched MeSH terms: Lipid Peroxidation
  7. Salleh WM, Ahmad F, Yen KH, Sirat HM
    Int J Mol Sci, 2011;12(11):7720-31.
    PMID: 22174627 DOI: 10.3390/ijms12117720
    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%), compared to BHT (95.5 ± 0.5%), while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g) equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 μg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  8. Salleh WM, Ahmad F, Yen KH, Sirat HM
    Nat Prod Commun, 2012 Dec;7(12):1659-62.
    PMID: 23413576
    This study was designed to investigate the antioxidant and antimicrobial activities of the essential oils from Piper officinarum C. DC. GC and GC/MS analysis of the leaf and stem oils showed forty one components, representing 85.6% and 93.0% of the oil, respectively. The most abundant components in the leaf oil were beta-caryophyllene (11.2%), alpha-pinene (9.3%), sabinene (7.6%), beta-selinene (5.3%) and limonene (4.6%), while beta-caryophyllene (10.9%), alpha-phellandrene (9.3%), linalool (6.9%), limonene (6.7%) and alpha-pinene (5.0%) were the main components of the stem oil. The antioxidant activities were determined by using complementary tests: namely beta-carotene-linoleic acid, DPPH radical scavenging and total phenolic assays. The stems oil showed weak activity (IC50 = 777.4 microg/mL) in the DPPH system, but showed moderate lipid peroxidation inhibition in the beta-carotene-linoleic acid system (88.9 +/- 0.35%) compared with BHT (95.5 +/- 0.30%). Both oils showed weak activity against P. aeruginosa and E. coli with M IC values of 250 microg/mL.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  9. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    PMID: 25104050 DOI: 10.1186/1472-6882-14-291
    We hypothesized that C. borivilianum root, known to improve male reproductive performance, prevents impairment in characteristics, morphology and elevation of oxidative stress in sperm of diabetics. We therefore investigated the effect of aqueous root extract of C. borivilianum on these parameters in diabetic rat model.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  10. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    Int J Med Sci, 2014;11(11):1172-84.
    PMID: 25249786 DOI: 10.7150/ijms.9056
    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes.
    METHODS: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated.
    RESULTS: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats.
    CONCLUSIONS: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes.
    KEYWORDS: Chlorophytum borivilianum; diabetes; glucose; lipid profile; oxidative stress.; pancreas
    Matched MeSH terms: Lipid Peroxidation/drug effects
  11. Vakhrusheva T, Panasenko O
    Chem Phys Lipids, 2006 Apr;140(1-2):18-27.
    PMID: 16458872
    In this work, we studied whether chondroitin sulfates and dextran sulfates (DXSs) can influence hypochlorite-induced peroxidation of phosphatidylcholine (PC) liposomes. Multilamellar liposomes (2 mg lipid/ml) were prepared in phosphate buffer, pH 7.4, with NaCl or not and exposed to reagent HOCl/ClO- (1mM) at 37 degrees C in the presence of different concentrations of chondroitin 6-sulfate (C6S), chondroitin 4-sulfate (C4S), DXS 8000, DXS 40,000, and DXS 500,000. Lipid peroxidation was assessed by thiobarbituric acid-reactive substance (TBARS) production. DXSs and C6S enhanced TBARS production in a dose-dependent manner. The decline in TBARS production at the relatively high C6S concentrations may be attributed to C4S present in C6S, since in contrast to C6S, C4S is known to react with hypochlorite. Dextrans, nonsulfated analogues of DXS, failed to modulate TBARS production. This fact indicates the important role of negatively charged sulfate groups for DXS to facilitate hypochlorite-induced peroxidation of PC liposomes. The electrostatic nature of the mechanism providing for the pro-oxidative effect of DXS was also supported by the influence of liposome surface charge and solution ionic strength on the extent of liposome peroxidation. The addition of calcium ions to the incubation mixture did not prevent the pro-oxidative action of DXS. The relevance of the results to atherogenesis is discussed.
    Matched MeSH terms: Lipid Peroxidation
  12. Mani V, Jaafar SM, Azahan NSM, Ramasamy K, Lim SM, Ming LC, et al.
    Life Sci, 2017 Jul 01;180:23-35.
    PMID: 28501482 DOI: 10.1016/j.lfs.2017.05.013
    AIM: The present study is aimed to investigate the ability of ciproxifan, a histamine H3 receptor antagonist to inhibit β-amyloid (Aβ)-induced neurotoxicity in SK-N-SH cells and APP transgenic mouse model.

    MATERIALS AND METHODS: In vitro studies was designed to evaluate the neuroprotective effects of ciproxifan in Aβ25-35 - induced SK-N-SH cells. For the in vivo study, ciproxifan (1 and 3mg/kg, i.p.) was administrated to transgenic mice for 15days and behaviour was assessed using the radial arm maze (RAM). Brain tissues were collected to measure Aβ levels (Aβ1-40 and Aβ1-42), acetylcholine (ACh), acetylcholinesterase (AChE), nitric oxide (NO), lipid peroxidation (LPO), antioxidant activities, cyclooxygenases (COX) and cytokines (IL-1α, IL-1β and IL-6), while plasma was collected to measure TGF-1β.

    RESULTS: The in vitro studies demonstrated neuroprotective effect of ciproxifan by increasing cell viability and inhibiting reactive oxygen species (ROS) in Aβ25-35-induced SK-N-SH cells. Ciproxifan significantly improved the behavioural parameters in RAM. Ciproxifan however, did not alter the Aβ levels in APP transgenic mice. Ciproxifan increased ACh and showed anti-oxidant properties by reducing NO and LPO levels as well as enhancing antioxidant levels. The neuroinflammatory analysis showed that ciproxifan reduced both COX-1 and COX-2 activities, decreased the level of pro-inflammatory cytokines IL-1α, IL-1β and IL-6 and increased the level of anti-inflammatory cytokine TGF-1β.

    CONCLUSION: This present study provides scientific evidence of the use of ciproxifan via antioxidant and cholinergic pathways in the management of AD.

    Matched MeSH terms: Lipid Peroxidation
  13. Appukutty M, Radhakrishnan AK, Ramasamy K, Ramasamy R, Abdul Majeed AB, Noor MI, et al.
    BMC Res Notes, 2012;5:649.
    PMID: 23173926 DOI: 10.1186/1756-0500-5-649
    This study examined the effects of bovine colostrum on exercise -induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle.
    Matched MeSH terms: Lipid Peroxidation
  14. Yang SK, Yusoff K, Ajat M, Wee CY, Yap PS, Lim SH, et al.
    Front Microbiol, 2021;12:635016.
    PMID: 33815320 DOI: 10.3389/fmicb.2021.635016
    Antibiotic-adjuvant combinatory therapy serves as a viable treatment option in addressing antibiotic resistance in the clinical setting. This study was carried out to assess and characterize the adjuvant potential and mode of action of linalool against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Linalool exhibited bactericidal activity alone (11,250 μg/ml) and in combination with meropenem (5,625 μg/ml). Comparative proteomic analysis showed significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in linalool-treated KPC-KP cells. Upregulation of oxidative stress regulator proteins and downregulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that linalool increases the bacterial surface charge as well as the membrane permeability. Intracellular leakage of nucleic acid and proteins was detected upon linalool treatment. Scanning and transmission electron microscopies further revealed the breakage of bacterial membrane and loss of intracellular materials. Linalool induced oxidative stress by generating reactive oxygen species (ROS) which initiates lipid peroxidation, leading to damage of the bacterial membrane. This leads to intracellular leakage, eventually killing the KPC-KP cells. Our study demonstrated that linalool possesses great potential in future clinical applications as an adjuvant along with existing antibiotics attributed to their ability in disrupting the bacterial membrane by inducing oxidative stress. This facilitates the uptake of antibiotics into the bacterial cells, enhancing bacterial killing.
    Matched MeSH terms: Lipid Peroxidation
  15. Chandramathi S, Suresh K, Anita ZB, Kuppusamy UR
    J Cancer Res Clin Oncol, 2009 Feb;135(2):319-23.
    PMID: 18758816 DOI: 10.1007/s00432-008-0462-7
    PURPOSE: This study aimed to use non-invasive methods to assess and compare the levels of oxidative indices and non-enzymatic antioxidants in breast and colorectal cancer (CRC) patients. Various studies have reported on lipid peroxidation, hydrogen peroxide (H(2)O(2)) and ferric-reducing antioxidant power (FRAP) levels in the serum of cancer patients but this is the first report that highlights the significance of urinary-advanced oxidative protein product (AOPP) in cancer patients.
    METHODS: The levels of advanced oxidative protein product (AOPP), hydrogen peroxide (H(2)O(2)), malondialdehyde (MDA) which is a marker for lipid peroxidation and ferric-reducing antioxidant power (FRAP) were measured in urine samples of breast (n = 101) and colorectal cancer (n = 49) patients attending the Oncology Clinic, University Malaya Medical Centre, Kuala Lumpur and were compared with 95 age-matched healthy individuals.
    RESULTS: AOPP, H(2)O(2) and MDA levels in the urine were significantly higher in the CRC patients compared to the control subjects and breast cancer patients. In breast cancer patients, only AOPP level was elevated. FRAP level did not differ between breast and colorectal cancer patients but the levels were significantly lower compared to control subjects.
    CONCLUSION: Urinary oxidative indices such as AOPP, H(2)O(2), and MDA as well as FRAP could serve as useful non-invasive oxidative stress markers in colorectal cancer but only AOPP serves as a useful urinary oxidative biomarker in breast cancer.
    Study site: Oncology clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Lipid Peroxidation*
  16. Nafeeza MI, Fauzee AM, Kamsiah J, Gapor MT
    Asia Pac J Clin Nutr, 2002;11(4):309-13.
    PMID: 12495264
    This study examined the effects of a tocotrienol-rich fraction (TRF) obtained from palm oil on the healing of aspirin-induced gastric mucosal lesions. Thirty-six male Sprague-Dawley rats (200-250 g) were randomly divided into three groups. Group I was fed a vitamin E-deficient diet (control), Group II was fed a vitamin E-deficient diet supplemented with tocopherol (300 mg/kg food) and Group III was fed a vitamin E-deficient diet supplemented with TRF (300 mg/kg food). After eight weeks, the control and treated groups received a single intragastric dose of 400 mg/kg body weight aspirin. The rats were killed 24 h after exposure to aspirin. Assessment of gastric lesions showed a lower gastric lesion index in the TRF (P = 0.0005) and tocopherol groups (P = 0.0008) compared to the control. The gastric malondialdehyde (MDA) content was also lower in the TRF (P = 0.025) and tocopherol groups (P = 0.025) compared to control. There were, however, no significant differences in the gastric lesion index and gastric MDA content between the TRF and tocopherol-fed groups. There were no significant differences in the adherent gastric mucous concentration and gastric acid concentration among all groups. We conclude that the TRF and tocopherol are equally effective in preventing aspirin-induced gastric lesions. The most probable mechanism is through their ability to limit lipid peroxidation, which is involved in aspirin-induced gastric lesions.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  17. Matanjun P, Mohamed S, Muhammad K, Mustapha NM
    J Med Food, 2010 Aug;13(4):792-800.
    PMID: 20482284 DOI: 10.1089/jmf.2008.1212
    This study was designed to investigate the comparative in vivo cardiovascular protective effects of red, green, and brown tropical seaweeds, namely, Kappaphycus alvarezii (or Eucheuma cottonii), Caulerpa lentillifera, and Sargassum polycystum, in rats fed on high-cholesterol/high-fat (HCF) diets. Male Sprague-Dawley rats (weighing 260-300 g) on the HCF diet had significantly increased body weight, plasma total cholesterol (TC), plasma low-density lipoprotein cholesterol (LDL-C), plasma triglycerides (TG), lipid peroxidation, and erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase levels after 16 weeks. Supplementing 5% seaweeds to HCF diet significantly reduced plasma TC (-11.4% to -18.5%), LDL-C (-22% to -49.3%), and TG (-33.7% to -36.1%) levels and significantly increased HDL-C levels (16.3-55%). Among the seaweeds, S. polycystum showed the best anti-obesity and blood GSH-Px properties, K. alvarezii showed the best antihyperlipemic and in vivo antioxidation effects, and C. lentillifera was most effective at reducing plasma TC. All seaweeds significantly reduced body weight gain, erythrocyte GSH-Px, and plasma lipid peroxidation of HCF diet rats towards the values of normal rats.
    Matched MeSH terms: Lipid Peroxidation/drug effects
  18. Adam SK, Das S, Soelaiman IN, Umar NA, Jaarin K
    Tohoku J. Exp. Med., 2008 Jul;215(3):219-26.
    PMID: 18648182
    Repeated heating of soy oil may promote lipid peroxidation. Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis, especially in estrogen-deficient states. This study was performed to explore the deleterious effects of repeatedly heated soy oil on the development of atherosclerosis using ovariectomized rats, which represent an estrogen-deficient state. Twenty-four female Sprague-Dawley rats were ovariectomized and were divided equally into four groups. The control group was fed with 2% cholesterol diet without any oil. The three treatment groups each received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated (repeatedly heated) soy oil, respectively. Serum thiobarbituric acid reactive substances (TBARS), lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months. Ovariectomized rats treated with repeatedly heated soy oil showed significant increases in lipid peroxidation and low-density lipoprotein (LDL) levels. Treatment with once-heated or repeatedly heated soy oil caused a significant increase in total cholesterol, while fresh soy oil caused significant reduction in homocysteine level as compared to other groups. Repeatedly heated soy oil caused significant increases in TBARS and LDL as compared to fresh oil. The higher level of homocysteine in the ovariectomized rats fed with repeatedly heated oil, as compared to those fed with fresh oil, also suggests the repeatedly heated oil contributes to the development of atherosclerosis. Importantly, the protective effect of the soy oil may be lost once it was being repeatedly heated. In conclusion, the consumption of repeatedly heated oil may predispose to atherosclerosis in estrogen-deficient states.
    Matched MeSH terms: Lipid Peroxidation
  19. Abd-Aziz, N.A.A., Chatterjee, A., Chatterjee, R., Durairajanayagam, D.
    ASM Science Journal, 2014;8(2):117-124.
    MyJurnal
    Elevated glucocorticoid levels during stressed conditions have been demonstrated to impair reproductive function in rats. In our previous study investigating the dose-related effects of corticosterone (CORT) on the fertilising capacity of epididymal sperm in surgically-manipulated rats, we found that 25 mg/kg/day of CORT given subcutaneously for seven consecutive days significantly decreased the number of implantation sites and increased intrauterine embryonic loss compared to controls. Based on these findings, the current study aims to elucidate the possible mechanisms of action of CORT-induced stress on impaired sperm fertility in rats. Results of the present study showed that compared to controls, 25 mg/kg/day of CORT given subcutaneously for 7 consecutive days significantly increased the level of plasma malondialdehyde (MDA) with corresponding attenuated levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Plasma adrenocorticotropin (ACTH) and testosterone levels were also found to be decreased in CORTtreated rats. These findings suggest that CORT-induced oxidative stress and exert an inhibitory effect at the hypothalamic-pituitary-gonadal (HPG) axis, as evidenced by increased lipid peroxidation, reduced enzymatic antioxidant activities, and decreased testosterone production. These subsequently result in decreased fertilising capacity of epididymal sperm leading to poor pregnancy outcomes.
    Matched MeSH terms: Lipid Peroxidation
  20. Saleh N, Al-Jassabi S, Eid AH, Nau WM
    Front Chem, 2021;9:660927.
    PMID: 33937198 DOI: 10.3389/fchem.2021.660927
    Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
    Matched MeSH terms: Lipid Peroxidation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links