Displaying publications 61 - 80 of 177 in total

Abstract:
Sort:
  1. Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Lam CK
    Planta Med, 2017 Jan;83(1-02):172-182.
    PMID: 27399233 DOI: 10.1055/s-0042-110857
    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.
    Matched MeSH terms: Metabolomics/methods*
  2. Wong EHJ, Ng CG, Goh KL, Vadivelu J, Ho B, Loke MF
    Sci Rep, 2018 01 23;8(1):1409.
    PMID: 29362474 DOI: 10.1038/s41598-018-19697-0
    The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value 
    Matched MeSH terms: Metabolomics/methods*
  3. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Mediani A, et al.
    Biochem Biophys Res Commun, 2024 May 14;708:149778.
    PMID: 38507867 DOI: 10.1016/j.bbrc.2024.149778
    The increasing prevalence of lean diabetes has prompted the generation of animal models that mimic metabolic disease in humans. This study aimed to determine the optimum streptozotocin-nicotinamide (STZ-NA) dosage ratio to elicit lean diabetic features in a rat model. It also used a proton nuclear magnetic resonance (1H NMR) urinary metabolomics approach to identify the metabolic effect of metformin treatment on this novel rat model. Three different STZ-NA dosage regimens (by body weight: Group A: 110 mg/kg NA and 45 mg/kg STZ; Group B: 180 mg/kg NA and 65 mg/kg STZ and Group C: 120 mg/kg NA and 60 mg/kg STZ) were administered to Sprague-Dawley rats along with oral metformin. Group A diabetic rats (A-DC) showed favorable serum biochemical analyses and a more positive response toward oral metformin administration relative to the other STZ-NA dosage ratio groups. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that glucose, citrate, pyruvate, hippurate, and methylnicotinamide differentiating the OPLS-DA of A-MTF rats (Group A diabetic rats treated with metformin) and A-DC model rats. Subsequent metabolic pathway analyses revealed that metformin treatment was associated with improvement in dysfunctions caused by STZ-NA induction, including carbohydrate metabolism, cofactor metabolism, and vitamin and amino acid metabolism. In conclusion, our results identify the best STZ-NA dosage ratio for a rat model to exhibit lean type 2 diabetic features with optimum sensitivity to metformin treatment. The data presented here could be informative to improve our understanding of non-obese diabetes in humans through the identification of possible activated metabolic pathways in the STZ-NA-induced diabetic rats model.
    Matched MeSH terms: Metabolomics/methods
  4. Munirah Md Noh S, Hamimah Sheikh Abdul Kadir S, Vasudevan S
    Biomolecules, 2019 06 22;9(6).
    PMID: 31234474 DOI: 10.3390/biom9060243
    The anti-fibrotic properties of ranibizumab have been well documented. As an antagonist to vascular endothelial growth factor (VEGF), ranibizumab works by binding and neutralizing all active VEGF-A, thus limiting progressive cell growth and proliferation. Ranibizumab application in ocular diseases has shown remarkable desired effects; however, to date, its antifibrotic mechanism is not well understood. In this study, we identified metabolic changes in ranibizumab-treated human Tenon's fibroblasts (HTFs). Cultured HTFs were treated for 48 h with 0.5 mg/mL of ranibizumab and 0.5 mg/mL control IgG antibody which serves as a negative control. Samples from each group were injected into Agilent 6520 Q-TOF liquid chromatography/mass spectrometer (LC/MS) system to establish the metabolite expression in both ranibizumab treated cells and control group. Data obtained was analyzed using Agilent Mass Hunter Qualitative Analysis software to identify the most regulated metabolite following ranibizumab treatment. At p-value < 0.01 with the cut off value of two-fold change, 31 identified metabolites were found to be significantly upregulated in ranibizumab-treated group, with six of the mostly upregulated having insignificant role in fibroblast cell cycle and wound healing regulations. Meanwhile, 121 identified metabolites that were downregulated, and seven of the mostly downregulated are significantly involved in cell cycle and proliferation. Our findings suggest that ranibizumab abrogates the tissue scarring and wound healing process by regulating the expression of metabolites associated with fibrotic activity. In particular, we found that vitamin Bs are important in maintaining normal folate cycle, nucleotide synthesis, and homocysteine and spermidine metabolism. This study provides an insight into ranibizumab's mechanism of action in HTFs from the perspective of metabolomics.
    Matched MeSH terms: Metabolomics*
  5. Rehman SU, Choe K, Yoo HH
    Molecules, 2016 Mar 10;21(3):331.
    PMID: 26978330 DOI: 10.3390/molecules21030331
    Eurycoma longifolia Jack (known as tongkat ali), a popular traditional herbal medicine, is a flowering plant of the family Simaroubaceae, native to Indonesia, Malaysia, Vietnam and also Cambodia, Myanmar, Laos and Thailand. E. longifolia, is one of the well-known folk medicines for aphrodisiac effects as well as intermittent fever (malaria) in Asia. Decoctions of E. longifolia leaves are used for washing itches, while its fruits are used in curing dysentery. Its bark is mostly used as a vermifuge, while the taproots are used to treat high blood pressure, and the root bark is used for the treatment of diarrhea and fever. Mostly, the roots extract of E. longifolia are used as folk medicine for sexual dysfunction, aging, malaria, cancer, diabetes, anxiety, aches, constipation, exercise recovery, fever, increased energy, increased strength, leukemia, osteoporosis, stress, syphilis and glandular swelling. The roots are also used as an aphrodisiac, antibiotic, appetite stimulant and health supplement. The plant is reported to be rich in various classes of bioactive compounds such as quassinoids, canthin-6-one alkaloids, β-carboline alkaloids, triterpene tirucallane type, squalene derivatives and biphenyl neolignan, eurycolactone, laurycolactone, and eurycomalactone, and bioactive steroids. Among these phytoconstituents, quassinoids account for a major portion of the E. longifolia root phytochemicals. An acute toxicity study has found that the oral Lethal Dose 50 (LD50) of the alcoholic extract of E. longifolia in mice is between 1500-2000 mg/kg, while the oral LD50 of the aqueous extract form is more than 3000 mg/kg. Liver and renal function tests showed no adverse changes at normal daily dose and chronic use of E. longifolia. Based on established literature on health benefits of E. longifolia, it is important to focus attention on its more active constituents and the constituents' identification, determination, further development and most importantly, the standardization. Besides the available data, more evidence is required regarding its therapeutic efficacy and safety, so it can be considered a rich herbal source of new drug candidates. It is very important to conserve this valuable medicinal plant for the health benefit of future generations.
    Matched MeSH terms: Metabolomics/methods
  6. Chong SG, Ismail IS, Chong CM, Mad Nasir N, Saleh Hodin NA
    Drug Chem Toxicol, 2024 Sep;47(5):573-586.
    PMID: 38726945 DOI: 10.1080/01480545.2024.2346751
    Zebrafish (Danio rerio) is ideal for studying the effects of toxins like lead or plumbum (Pb) which persist in the environment and harm body systems when absorbed. Increasing Pb concentration could result in a higher mortality rate and alteration of behavior and metabolism. The present study evaluates the acute toxicity effect of Pb on metabolome and behavior in adult zebrafish. The zebrafish were exposed to various Pb concentrations ranging from 0 to 30 mg/L for different periods (24, 48, and 72 h) before the fish samples were subjected to Nuclear Magnetic Resonance (NMR)-multivariate data analysis (MVDA) with additional support from behavioral assessment. The behavior of zebrafish was significantly altered after Pb inducement and the differential metabolites increased in low (5 mg/L) while decreased in high (10 mg/L) Pb concentrations. An ideal Pb induction could be achieved by 5 mg/L concentration in 24 h, which induced significant metabolite changes without irreversible damage. Continuing research on the effects of lead toxicity is crucial to develop effective prevention and treatment strategies.
    Matched MeSH terms: Metabolomics*
  7. Alallam B, Abdulameed HT, Lim V
    Food Chem, 2025 Apr 01;470:142666.
    PMID: 39755036 DOI: 10.1016/j.foodchem.2024.142666
    Sargassum polycystum (S. polycystum) is a brown macroalga with a high phytochemical content, making it a nutritious and bioactive food source. However, information on factors contributing to health benefits, like antioxidants and cytotoxicity, is less explored for Malaysian S. polycystum. In this study, three extracts of S. polycystum were characterized using a combination of analytical techniques. Despite similar carbohydrate content across all extracts, water extract exhibited the highest protein [21.90 ± 1.01 albumin equivalent (μg/mg)] and phenolic [7.73 ± 1.95 gallic acid equivalent (μg/mg)] contents. However, it displayed the lowest antioxidant and anticancer activities [half-maximal inhibitory concentration (IC50) of > 2000 μg/mL]. Interestingly, ethanolic extract demonstrated the strongest scavenging activity (IC50 of 397.90 ± 20.43 μg/mL) and selective anticancer activity against MCF7 breast cancer cells (IC50 of 338.63 ± 48.98 μg/mL). Untargeted metabolomic profiling confirmed the differences in the chemical composition of the extracts. Subsequently, correlation and docking analyses were used to identify the potential bioactive compounds within the extracts. The ethanolic extract is a rich source of these bioactive compounds with superior antioxidant and anticancer properties, highlighting the need for further research on its potential utility in the food industry.
    Matched MeSH terms: Metabolomics*
  8. Low CF, Rozaini MZH, Musa N, Syarul Nataqain B
    J Fish Dis, 2017 Oct;40(10):1267-1277.
    PMID: 28252175 DOI: 10.1111/jfd.12610
    The approaches of transcriptomic and proteomic have been widely used to study host-pathogen interactions in fish diseases, and this is comparable to the recently emerging application of metabolomic in elucidating disease-resistant mechanisms in fish that gives new insight into potential therapeutic strategies to improve fish health. Metabolomic is defined as the large-scale study of all metabolites within an organism and represents the frontline in the 'omics' approaches, providing direct information on the metabolic responses and perturbations in metabolic pathways. In this review, the current research in infectious fish diseases using metabolomic approach will be summarized. The metabolomic approach in economically important fish infected with viruses, bacteria and nematodes will also be discussed. The potential of the metabolomic approach for management of these infectious diseases as well as the challenges and the limitations of metabolomic in fish disease studies will be explored. Current review highlights the impacts of metabolomic studies in infectious fish diseases, which proposed the potential of new therapeutic strategies to enhance disease resistance in fish.
    Matched MeSH terms: Metabolomics/instrumentation; Metabolomics/methods*
  9. Lee, Han Hing, Lee, Chee Yen, Shoji, Yoshinobu, Chin, Hoe Teh
    Compendium of Oral Science, 2015;2(1):40-46.
    MyJurnal
    Background: Saliva is a readily accessible biofluid that is important for the overall quality of life, func-tionally essential in the chewing, swallowing, tasting, regulation mouth flora and prevention of caries. The aim of this study is to assess the global metabolomic profile of saliva in healthy Malaysian adults. Methods: As a first step to determining and understanding the metabolomic profile of saliva in healthy Malaysian adults, we have collected saliva samples of 50 adults and measured the salivary metabolite to establish a profiling metabolite data, Human Metabolome Database (HMDB). Metabolites concentrations of saliva in healthy subjects were measured by using 1H NMR spectroscopy. Results: The results showed there was no significant inter-individual variations of the key metabolites observed among the healthy Malaysian adults and there was no significant variation of the metabolites between female and male subjects. Conclusion: The metabolomic profile of saliva in healthy Malaysian adults could be used to establish the metabolomic database and used as a comparison for future study of the saliva of specific diseases.
    Matched MeSH terms: Metabolomics
  10. Neik TX, Amas J, Barbetti M, Edwards D, Batley J
    Plants (Basel), 2020 Oct 10;9(10).
    PMID: 33050509 DOI: 10.3390/plants9101336
    Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
    Matched MeSH terms: Metabolomics
  11. Lim CK, Nurul Fadhilah Marzuki, Goh YK, You KG, Kah JG, Rafidah Ahmad, et al.
    Sains Malaysiana, 2018;47:3061-3068.
    Basal stem rot disease of oil palm caused by Ganoderma boninense is one of the most devastating diseases in oil palm
    plantation resulting in low yield, loss of palm stands and shorter replanting cycle. To-date, there is no effective treatment
    for Ganoderma infected palms. Control measures, either chemical or cultural approaches, show varying degrees of
    effectiveness. The application of biological control agents which is environmental-friendly could be an attractive solution
    to overcome the problem. Earlier, we had isolated a mycoparasite, Scytalidium parasiticum, from the basidiomata of
    Ganoderma boninense. In vitro assay and nursery experiment showed that this fungus could suppress Ganoderma infection
    and reduce disease severity. However, metabolites which might contribute to the antagonistic or mycoparasitic effect
    remain unknown. In the current study, optimization of fungal sample processing, extraction, and analytical procedures
    were conducted to obtain metabolites from the maize substrate colonized by mycoparasitic ascomycetous Scytalidium
    parasiticum. This technique capable of producing sexual spores in sac-like organs. Untargeted metabolomics profiling
    was carried out by using Liquid Chromatography Time of Flight Mass Spectrometry (LC-ToF-MS). We found that
    S. parasiticum in both liquid- and solid-state cultivation gave higher metabolite when extracted with 60% methanol with
    1% formic acid in combination with homogenisation methods such as ultrasonication and grinding. The findings from
    this study are useful for optimisation of metabolite extraction from other fungi-Ganoderma-plant interactions.
    Matched MeSH terms: Metabolomics
  12. Yong WK, Sim KS, Poong SW, Wei D, Phang SM, Lim PE
    3 Biotech, 2019 Aug;9(8):315.
    PMID: 31406637 DOI: 10.1007/s13205-019-1848-8
    An ecologically important tropical freshwater microalga, Scenedesmus quadricauda, was exposed to Ni toxicity under two temperature regimes, 25 and 35 °C to investigate the interactive effects of warming and different Ni concentrations (0.1, 1.0 and 10.0 ppm). The stress responses were assessed from the growth, photosynthesis, reactive oxygen species (ROS) generation and metabolomics aspects to understand the effects at both the physiological and biochemical levels. The results showed that the cell densities of the cultures were higher at 35 °C compared to 25 °C, but decreased with increasing Ni concentrations at 35 °C. In terms of photosynthetic efficiency, the maximum quantum yield of photosystem II (Fv/Fm) of S. quadricauda remained consistent across different conditions. Nickel concentration at 10.0 ppm affected the maximum rate of relative electron transport (rETRm) and saturation irradiance for electron transport (Ek) in photosynthesis. At 25 °C, the increase of non-photochemical quenching (NPQ) values in cells exposed to 10.0 ppm Ni might indicate the onset of thermal dissipation process as a self-protection mechanism against Ni toxicity. The combination of warming and Ni toxicity induced a strong oxidative stress response in the cells. The ROS level increased significantly by 40% after exposure to 10.0 ppm of Ni at 35 °C. The amount of Ni accumulated in the biomass was higher at 25 °C compared to 35 °C. Based on the metabolic profile, temperature contributed the most significant differentiation among the samples compared to Ni treatment and the interaction between the two factors. Amino acids, sugars and organic acids were significantly regulated by the combined factors to restore homeostasis. The most affected pathways include sulphur, amino acids, and nitrogen metabolisms. Overall, the results suggest that the inhibitory effect of Ni was lower at 35 °C compared to 25 °C probably due to lower metal uptake and primary metabolism restructuring. The ability of S. quadricauda to accumulate substantial amount of Ni and thrive at 35 °C suggests the potential use of this strain for phycoremediation and outdoor wastewater treatment.
    Matched MeSH terms: Metabolomics
  13. Saleh MSM, Jalil J, Mustafa NH, Ramli FF, Asmadi AY, Kamisah Y
    Life (Basel), 2021 Jan 22;11(2).
    PMID: 33499128 DOI: 10.3390/life11020078
    Parkia speciosa is a food plant that grows indigenously in Southeast Asia. A great deal of interest has been paid to this plant due to its traditional uses in the treatment of several diseases. The pods contain many beneficial secondary metabolites with potential applications in medicine and cosmetics. However, studies on their phytochemical properties are still lacking. Therefore, the present study was undertaken to profile the bioactive compounds of P. speciosa pods collected from six different regions of Malaysia through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) and α-glucosidase inhibitory potential. This study applied metabolomics to elucidate the differences between P. speciosa populations found naturally in the different locations and to characterize potential α-glucosidase inhibitors from P. speciosa pods. P. speciosa collected from different regions of Malaysia showed good α-glucosidase inhibitory activity, with a median inhibitory concentration (IC50) of 0.45-0.76 μg/mL. The samples from the northern and northeastern parts of Peninsular Malaysia showed the highest activity. Using UHPLC-QTOF-MS/MS analysis, 25 metabolites were identified in the pods of P. speciosa. The findings unveiled that the pods of P. speciosa collected from different locations exhibit different levels of α-glucosidase inhibitory activity. The pods are a natural source of potent antidiabetic bioactive compounds.
    Matched MeSH terms: Metabolomics
  14. Shafiee MN, Chapman C, Barrett D, Abu J, Atiomo W
    Gynecol Oncol, 2013 Nov;131(2):489-92.
    PMID: 23822891 DOI: 10.1016/j.ygyno.2013.06.032
    Endometrial cancer (EC) is the commonest gynaecological cancer in North American and European women. Even though it has been shown that women with polycystic ovary syndrome (PCOS) have a three-fold increase in the risk of developing EC compared to women without PCOS, the precise molecular mechanisms which increase EC risk in women with PCOS remain unclear. Clinical strategies to prevent EC in PCOS are therefore not well researched and understood. Although raised estrogen levels, hyperinsulinaemia and, reduced apoptosis have been suggested as potential mechanisms, there is a lack of clarity about how these factors and other factors may interact to increase EC risk in PCOS. This article reviews the literature, on the potential molecular links between PCOS and EC but argues for a paradigm shift, to a systems biology-based approach in future research into the molecular links between PCOS and EC. The potential challenges of a systems biology-based approach are outlined but not considered insurmountable.
    Matched MeSH terms: Metabolomics
  15. Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL
    PeerJ, 2021;9:e10816.
    PMID: 33777509 DOI: 10.7717/peerj.10816
    Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach.

    Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.

    Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

    Matched MeSH terms: Metabolomics
  16. Watanabe H, Ng CH, Limviphuvadh V, Suzuki S, Yamada T
    PeerJ, 2020;8:e9579.
    PMID: 32821539 DOI: 10.7717/peerj.9579
    Coffee beans derived from feces of the civet cat are used to brew coffee known as kopi luwak (the Indonesian words for coffee and palm civet, respectively), which is one of the most expensive coffees in the world owing to its limited supply and strong market demand. Recent metabolomics studies have revealed that kopi luwak metabolites differ from metabolites found in other coffee beans. To produce kopi luwak, coffee beans are first eaten by civet cats. It has been proposed that fermentation inside the civet cat digestive tract may contribute to the distinctively smooth flavor of kopi luwak, but the biological basis has not been determined. Therefore, we characterized the microbiome of civet cat feces using 16S rRNA gene sequences to determine the bacterial taxa that may influence fermentation processes related to kopi luwak. Moreover, we compared this fecal microbiome with that of 14 other animals, revealing that Gluconobacter is a genus that is, uniquely found in feces of the civet cat. We also found that Gluconobacter species have a large number of cell motility genes, which may encode flagellar proteins allowing colonization of the civet gut. In addition, genes encoding enzymes involved in the metabolism of hydrogen sulfide and sulfur-containing amino acids were over-represented in Gluconobacter. These genes may contribute to the fermentation of coffee beans in the digestive tract of civet cats.
    Matched MeSH terms: Metabolomics
  17. Hellal K, Mediani A, Ismail IS, Tan CP, Abas F
    Food Res Int, 2021 02;140:110046.
    PMID: 33648271 DOI: 10.1016/j.foodres.2020.110046
    Lupinus albus or white lupine has recently received increase attention for its medicinal values. Several studies have described the hypoglycemic effect of the white lupine, which is known as a food plant with potential value for treatment of diabetes. This study provides useful information for the identification and quantification of compounds in L. albus fractions by proton nuclear magnetic resonance (1H NMR) spectroscopy. In total, 35 metabolites were identified from L. albus fractions.Principal component analysis (PCA) was used as a multivariate projection method for visualizing the different composition of four different fractions. The bioactivities of fractions with different polarity obtained from the extract of L. albus seeds are reported. Among the fractions studied, the chloroform fraction (CF) exhibits a high free radical scavenging (DPPH) and α-glucosidase inhibitory activities with IC50 values of 24.08 and 20.08 μg/mL, respectively. A partial least-squares analyses (PLS) model had been successfully performed to correlate the potential active metabolites with the corresponding biological activities. Metabolites containing proline, caprate, asparagine, lupinoisolone C, hydroxyiso lupalbigenin and some unknown compounds show high correlation with the bioactivities studied. Moreover, the structural identification in the active fraction was supported by ultrahigh-performance-liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) analysis. A total of 21 metabolites were tentatively identified from MS/MS data by comparison with previously reported data. Most of these compounds are isoflavonoids without known biological activity. This information may be useful for developing functional food from L. albus with potential application in the management of diabetes.
    Matched MeSH terms: Metabolomics
  18. Wen X, Cao J, Mi J, Huang J, Liang J, Wang Y, et al.
    J Hazard Mater, 2021 03 05;405:124215.
    PMID: 33109407 DOI: 10.1016/j.jhazmat.2020.124215
    High concentrations of antibiotics may induce bacterial resistance mutations and further lead to fitness costs by reducing growth of resistant bacteria. However, antibiotic concentrations faced by bacteria are usually low in common environments, which leads to questions about how resistant bacteria with fitness costs regulate metabolism to coexist or compete with susceptible bacteria during sublethal challenge. Our study revealed that a low proportion (< 15%) of resistant bacteria coexisted with susceptible bacteria due to the fitness cost without doxycycline. However, the cost for the resistant strain decreased at a doxycycline concentration of 1 mg/L and even disappeared when the doxycycline concentration was 2 mg/L. Metabonomics analysis revealed that bypass carbon metabolism and biosynthesis of secondary metabolites were the primary metabolic pathways enriching various upregulated metabolites in resistant bacteria without doxycycline. Moreover, the alleviation of fitness cost for resistant bacteria competed with susceptible bacteria at 1 mg/L doxycycline was correlated with the downregulation of the biomarkers pyruvate and pilocarpine. Our study offered new insight into the metabolic mechanisms by which the fitness cost of resistant mutants was reduced at doxycycline concentrations as low as 1 mg/L and identified various potential metabolites to limit the spread of antimicrobial resistance in the environment.
    Matched MeSH terms: Metabolomics
  19. Yap TW, Leow AH, Azmi AN, Callahan DL, Perez-Perez GI, Loke MF, et al.
    Front Microbiol, 2017;8:536.
    PMID: 28424674 DOI: 10.3389/fmicb.2017.00536
    Background:Helicobacter pylori colonizes the gastric mucosa of more than half of the world's population. There is increasing evidence H. pylori protects against the development of obesity and childhood asthma/allergies in which the development of these diseases coincide with transient dysbiosis. However, the mechanism underlying the association of H. pylori eradication with human metabolic and immunological disorders is not well-established. In this study, we aimed to investigate the local and systemic effects of H. pylori eradication through untargeted fecal lipidomics and plasma metabolomics approaches by liquid chromatography mass spectrometry (LC-MS). Results: Our study revealed that eradication of H. pylori eradication (i.e., loss of H. pylori and/or H. pylori eradication therapy) changed many global metabolite/lipid features, with the majority being down-regulated. Our findings primarily show that H. pylori eradication affects the host energy and lipid metabolism which may eventually lead to the development of metabolic disorders. Conclusion: These predictive metabolic signatures of metabolic and immunological disorders following H. pylori eradication can provide insights into dynamic local and systemic metabolism related to H. pylori eradication in modulating human health.
    Matched MeSH terms: Metabolomics
  20. Pariyani R, Ismail IS, Ahmad Azam A, Abas F, Shaari K
    J Sci Food Agric, 2017 Sep;97(12):4169-4179.
    PMID: 28233369 DOI: 10.1002/jsfa.8288
    BACKGROUND: Java tea is a well-known herbal infusion prepared from the leaves of Orthosiphon stamineus (OS). The biological properties of tea are in direct correlation with the primary and secondary metabolite composition, which in turn largely depends on the choice of drying method. Herein, the impact of three commonly used drying methods, i.e. shade, microwave and freeze drying, on the metabolite composition and antioxidant activity of OS leaves was investigated using proton nuclear magnetic resonance (1 H NMR) spectroscopy combined with multivariate classification and regression analysis tools.

    RESULTS: A total of 31 constituents comprising primary and secondary metabolites belonging to the chemical classes of fatty acids, amino acids, sugars, terpenoids and phenolic compounds were identified. Shade-dried leaves were identified to possess the highest concentrations of bioactive secondary metabolites such as chlorogenic acid, caffeic acid, luteolin, orthosiphol and apigenin, followed by microwave-dried samples. Freeze-dried leaves had higher concentrations of choline, amino acids leucine, alanine and glutamine and sugars such as fructose and α-glucose, but contained the lowest levels of secondary metabolites.

    CONCLUSION: Metabolite profiling coupled with multivariate analysis identified shade drying as the best method to prepare OS leaves as Java tea or to include in traditional medicine preparation. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Metabolomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links