Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Chan SY, Chan BQY, Liu Z, Parikh BH, Zhang K, Lin Q, et al.
    ACS Omega, 2017 Dec 31;2(12):8959-8968.
    PMID: 30023596 DOI: 10.1021/acsomega.7b01604
    Natural polysaccharide pectin has for the first time been grafted with polyhydroxybutyrate (PHB) via ring-opening polymerization of β-butyrolactone. This copolymer, pectin-polyhydroxybutyrate (pec-PHB), was blended with PHB in various proportions and electrospun to produce nanofibers that exhibited uniform and bead-free nanostructures, suggesting the miscibility of PHB and pec-PHB. These nanofiber blends exhibited reduced fiber diameters from 499 to 336-426 nm and water contact angles from 123.8 to 88.2° on incorporation of pec-PHB. They also displayed 39-335% enhancement of elongation at break relative to pristine PHB nanofibers. pec-PHB nanofibers were found to be noncytotoxic and biocompatible. Human retinal pigmented epithelium (ARPE-19) cells were seeded onto pristine PHB and pec-PHB nanofibers as scaffold and showed good proliferation. Higher proportions of pec-PHB (pec-PHB10 and pec-PHB20) yielded higher densities of cells with similar characteristics to normal RPE cells. We propose, therefore, that nanofibers of pec-PHB have significant potential as retinal tissue engineering scaffold materials.
    Matched MeSH terms: Pectins
  2. Pradeep Puligundla, Chulkyoon Mok, Sang Eun Oh, Vijaya Sarathi Reddy Obulam
    Sains Malaysiana, 2014;43:1901-1906.
    In recent years, by-products of fruit processing have received a great deal of attention, which is primarily due to their nutritional and economic exploitation through utilization of emerging technologies. Mango peel waste, a by-product from pulp processing units, is an important source of high quality antioxidant dietary fibre, pectin, polyphenols and carotenoids. It also possess significant biotechnological potential since it has been found suitable for several bioprocesses including ethanol, biogas, lactic acid, enzymes and single cell production. Valorization of mango peel through different routes not only can increase the profitability of fruit processing industries, but also help reduce environmental pollution. This review intends to provide a broad view on available technologies for mango peel waste utilization, with an emphasis on its biotechnological conversion into added value products beside other ways of utilization.
    Matched MeSH terms: Pectins
  3. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
    Matched MeSH terms: Pectins/administration & dosage*; Pectins/pharmacology; Pectins/therapeutic use
  4. Nur Farhana A.R., Amin I., Sadeq Hassan A.S., Shuhaimi M.
    MyJurnal
    Okra plant particularly its fruit is highly mucilage which composed of pectin and high content of carbohydrate. Byproducts of okra plant such as leaves and matured fruits will be discarded whenever the young fruits are harvested which eventually leads to environmental pollution. Those byproducts have potential to become plant-based alternative for bovine and pork related gelatin. This study aimed to determine the gel formation of pectin extracted from okra plant byproducts particularly the leaves, pulp (skin without seeds) and seeds. Pectin was extracted using a sequential extraction with the applications of hot buffer (HB) and hot buffer with chelating agents (CH). CH extraction gave the highest pectin yield (>40%) compared to HB and DA. The HB fraction harbored highly purified pectin due to high anhydro uronic acid content and degree of esterification. The highest pectin yield was extracted from seeds with an overall fraction yield of 86%, followed by the leaves (75%) and pulp (71%). The pectin was blended with konjac glucomannan (KG) in 5.0:1.6 ratio to form gel and stored for 16 - 18hr at 4°C ± 1.0. The gel formed using HB extraction was found to have significantly lower (p < 0.05) gel strength than HB with CH extraction. This study concluded that HB and CH pectin extracts derived from okra leaves, pulp and seeds have good potential to become gelling agent.
    Matched MeSH terms: Pectins
  5. Khoo LT, Abas F, Abdullah JO, Mohd Tohit ER, Hamid M
    PMID: 24987430 DOI: 10.1155/2014/614273
    Melastoma malabathricum Linn. is a perennial traditional medicine plants that grows abundantly throughout Asian countries. In this study, M. malabathricum Linn. leaf hot water crude extract with anticoagulant activity was purified through solid phase extraction cartridge and examined for the bioactive chemical constituents on blood coagulation reaction. The SPE purified fractions were, respectively, designated as F1, F2, F3, and F4, and each was subjected to the activated partial thromboplastin time (APTT) anticoagulant assay. Active anticoagulant fractions (F1, F2, and F3) were subjected to chemical characterisation evaluation. Besides, neutral sugar for carbohydrate part was also examined. F1, F2, and F3 were found to significantly prolong the anticoagulant activities in the following order, F1 > F2 > F3, in a dose dependent manner. In addition, carbohydrate, hexuronic acid, and polyphenolic moiety were measured for the active anticoagulant fractions (F1, F2, and F3). The characterisation of chemical constituents revealed that all these three fractions contained acidic polysaccharides (rhamnogalacturonan, homogalacturonan, and rhamnose hexose-pectic type polysaccharide) and polyphenolics. Hence, it was concluded that the presence of high hexuronic acids and polysaccharides, as well as polyphenolics in traditional medicinal plant, M. malabathricum, played a role in prolonging blood clotting in the intrinsic pathway.
    Matched MeSH terms: Pectins
  6. Tan MS, Wang Y, Dykes GA
    Foodborne Pathog Dis, 2013 Nov;10(11):992-4.
    PMID: 23941519 DOI: 10.1089/fpd.2013.1536
    This study aimed to establish, as a proof of concept, whether bacterial cellulose (BC)-derived plant cell wall models could be used to investigate foodborne bacterial pathogen attachment. Attachment of two strains each of Salmonella enterica and Listeria monocytogenes to four BC-derived plant cell wall models (namely, BC, BC-pectin [BCP], BC-xyloglucan [BCX], and BC-pectin-xyloglucan [BCPX]) was investigated. Chemical analysis indicated that the BCPX composite (31% cellulose, 45.6% pectin, 23.4% xyloglucan) had a composition typical of plant cell walls. The Salmonella strains attached in significantly (p<0.05) higher numbers (~6 log colony-forming units [CFU]/cm(2)) to the composites than the Listeria strains (~5 log CFU/cm(2)). Strain-specific differences were also apparent with one Salmonella strain, for example, attaching in significantly (p<0.05) higher numbers to the BCX composite than to the other composites. This study highlights the potential usefulness of these composites to understand attachment of foodborne bacteria to fresh produce.
    Matched MeSH terms: Pectins/chemistry
  7. Ho YC, Norli I, Alkarkhi AF, Morad N
    Bioresour Technol, 2010 Feb;101(4):1166-74.
    PMID: 19854044 DOI: 10.1016/j.biortech.2009.09.064
    Polyacrylamide (PAM), a commonly used organic synthetic flocculant, is known to have high reduction in turbidity treatment. However, PAM is not readily degradable. In this paper, pectin as a biopolymeric flocculant is used. The objectives are (i) to determine the characteristics of both flocculants (ii) to optimize the treatment processes of both flocculants in synthetic turbid waste water. The results obtained indicated that pectin has a lower average molecular weight at 1.63 x 10(5) and PAM at 6.00 x 10(7). However, the thermal degradation results showed that the onset temperature for pectin is at 165.58 degrees C, while the highest onset temperature obtained for PAM is at 235.39 degrees C. The optimum treatment conditions for the biopolymeric flocculant for flocculating activity was at pH 3, cation concentration at 0.55 mM, and pectin concentration at 3 mg/L. In contrast, PAM was at pH 4, cation concentration >0.05 mM and PAM concentration between 13 and 30 mg/L.
    Matched MeSH terms: Pectins/chemistry*
  8. Bera H, Kumar S, Maiti S
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):149-159.
    PMID: 29932998 DOI: 10.1016/j.ijbiomac.2018.06.085
    Olive oil-entrapped diethanolamine-modified high-methoxyl pectin (DMP)-gellan gum (GG)-bionanofiller composites were developed for controlled intragastric delivery of metformin HCl (MFM). DMP had a degree of amidation of 48.7% and was characterized further by FTIR, XRD and DSC analyses. MFM-loaded composites were subsequently accomplished by green synthesis via ionotropic gelation technique using zinc acetate as cross-linker. The thermal, X-ray and infrared analyses suggested an environment in the composites compatible with the drug, except certain degree of attenuation in drug's crystallinity. Scanning electron microscopy revealed almost spherical shape of the composites. Depending upon the mass ratios of GG:DMP, types of nanofiller (neusilin/bentonite/Florite) and oil inclusion, the composites exhibited variable drug encapsulation efficiency (DEE, 50-85%) and extended drug release behaviours (Q8h, 69-94%) in acetate buffer (pH 4.5). The optimized oil-entrapped Florite R NF/GG: DMP (1:1) composites eluted MFM via case-II transport mechanism and its drug release data was best fitted in zero-order kinetic model. The optimized formulation demonstrated excellent gastroretentive properties and substantial hypoglycemic effect in streptozotocin-induced diabetic rats. These novel hybrid matrices were thus found suitable for controlled intragastric delivery of MFM for the management of type 2 diabetes.
    Matched MeSH terms: Pectins/chemistry
  9. Alkhader E, Roberts CJ, Rosli R, Yuen KH, Seow EK, Lee YZ, et al.
    J Biomater Sci Polym Ed, 2018 12;29(18):2281-2298.
    PMID: 30376409 DOI: 10.1080/09205063.2018.1541500
    Curcumin, the active ingredient of the rhizome curcuma longa has been extensively studied as an anticancer agent for various types of tumours. However, its efficacy as an anticancer agent is restricted due to poor absorption from the gastrointestinal tract, rapid metabolism and degradation in acidic medium. In the present study, we encapsulated curcumin in chitosan-pectinate nanoparticulate system (CUR-CS-PEC-NPs) for deployment of curcumin to the colon, whereby curcumin is protected against degradative effects in the upper digestive tract, and hence, maintaining its anticancer properties until colon arrival. The CUR-CS-PEC-NPs was taken up by HT-29 colorectal cancer cells which ultimately resulted in a significant reduction in cancer cell propagation. The anti-proliferative effect of the encapsulated curcumin was similar to that of free curcumin at equivalent doses which confirms that the encapsulation process did not impede the anticancer activity of curcumin. The oral bioavailability (Cmax, and AUC) of curcumin in CUR-CS-PEC-NPs was enhanced significantly by 4-folds after 6 hours of treatment compared to free curcumin. Furthermore, the clearance of curcumin from the CUR-CS-PEC-NPs was lower compared to free curcumin. These findings point to the potential application of the CUR-CS-PEC-NPs in the oral delivery of curcumin in the treatment of colon cancer.
    Matched MeSH terms: Pectins/chemistry*
  10. Wong TW, Nor Khaizan A
    Pharm Res, 2013 Jan;30(1):90-103.
    PMID: 22890987 DOI: 10.1007/s11095-012-0852-z
    PURPOSE: To investigate mechanism of microwave enhancing drug permeation transdermally through its action on skin.

    METHODS: Hydrophilic pectin-sulphanilamide films, with or without oleic acid (OA), were subjected to drug release and skin permeation studies. The skins were untreated or microwave-treated, and characterized by infrared spectroscopy, Raman spectroscopy, thermal, electron microscopy and histology techniques.

    RESULTS: Skin treatment by microwave at 2450 MHz for 5 min promoted drug permeation from OA-free film without incurring skin damage. Skin treatment by microwave followed by film loaded with drug and OA resulted in permeation of all drug molecules that were released from film. Microwave exerted spacing of lipid architecture of stratum corneum into structureless domains which was unattainable by OA. It allowed OA to permeate stratum corneum and accumulate in dermis at a greater ease, and synergistically inducing lipid/keratin fluidization at hydrophobic C-H and hydrophilic O-H, N-H, C-O, C=O, C-N regimes of skin, and promoting drug permeation.

    CONCLUSION: The microwave technology is evidently feasible for use in promotion of drug permeation across the skin barrier. It represents a new approach in transdermal drug delivery.

    Matched MeSH terms: Pectins/chemistry
  11. Tan MS, White AP, Rahman S, Dykes GA
    PLoS One, 2016;11(6):e0158311.
    PMID: 27355584 DOI: 10.1371/journal.pone.0158311
    Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.
    Matched MeSH terms: Pectins/metabolism
  12. Koriem KM, Arbid MS, Emam KR
    Environ Toxicol Pharmacol, 2014 Jul;38(1):14-23.
    PMID: 24860957 DOI: 10.1016/j.etap.2014.04.029
    Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.
    Matched MeSH terms: Pectins/pharmacology; Pectins/therapeutic use*
  13. Koriem KM, Fathi GE, Salem HA, Akram NH, Gamil SA
    Toxicol. Mech. Methods, 2013 May;23(4):263-72.
    PMID: 23193971 DOI: 10.3109/15376516.2012.748857
    Cadmium has been classified as an environmental pollutant and human carcinogen. Pectin is a family of complex polysaccharides that function as hydrating agents and cementing materials for the cellulosic network. The aim of this study was to evaluate the protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats. Forty male Wistar rats were divided into five equal groups. Groups 1 and 2 were injected intraperitoneally (i.p.) saline (1 mg/kg) and pectin (50 mg/kg), respectively, two days/weeks over three weeks period. Groups 3-5 were injected i.p. with 1 mg/kg cadmium two days/week while groups 4 and 5 co-administrated i.p. with 25 and 50 mg/kg pectin, respectively, three days/week over three weeks period. The results of the present work revealed that cadmium-exposed rats showed decrease in serum testosterone, dehydroepiandrosterone sulfate and lactate dehydrogenase. Testicular cholesterol, total protein, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, catalase, glutathione S-transferase and reduced glutathione levels were also decreased while testicular malondialdehyde level was increased after cadmium injection. On the other hand, serum luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin and γ-glutamyl transpeptidase were increased after cadmium exposure. Cadmium also induced sperms loss. Co-administration of pectin with cadmium restores all the above parameters and sperms to the normal levels where pectin at higher dose was more effective than lower one. These results were supported by histochemical investigations. In conclusion, pectin can counteract the testicular toxicity and oxidative stress induced by cadmium and the effect was dose-dependent.
    Matched MeSH terms: Pectins/administration & dosage; Pectins/therapeutic use*
  14. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p 
    Matched MeSH terms: Pectins/administration & dosage*; Pectins/chemistry
  15. Abdullah GZ, Abdulkarim MF, Chitneni M, Mutee AF, Ameer OZ, Salman IM, et al.
    Pharm Dev Technol, 2011 Aug;16(4):331-42.
    PMID: 20429815 DOI: 10.3109/10837451003739255
    Mebeverine HCl is a water soluble drug commonly used to treat irritable bowel syndrome by acting directly on the smooth muscles of the colon. This work was aimed at the formulation and in vitro evaluation of a colon-targeted drug delivery system containing mebeverine HCl. Matrix tablets were prepared using ethyl cellulose (EC), Eudragit RL 100 either solely or in combination by wet granulation technique. Dissolution was carried out in 0.1 N HCl for 2?h followed by pH 6.8 phosphate buffer for eight hours. Uncoated forms released more than 5% drug in 0.1 N HCl therefore, Eudragit L100 was used as a coat. The results indicated very slow release profile. As a result, single retardant was used to prepare the matrix and coated by Eudragit L 100. The matrix containing 7% Eudragit RL 100 and 6% of binder was subjected to further studies to assess the effect of different coats (Eudragit L 100-55 and cellulose acetate phthalate) and different binders (pectin and sodium alginate) on the release profile. Eudragit L 100 and pectin were the best coating agent and binder, respectively. The final formula was stable and it can be concluded that the prepared system has the potential to deliver mebeverine HCl in vivo to the colon.
    Matched MeSH terms: Pectins/chemistry
  16. Soh CP, Ali ZM, Lazan H
    Phytochemistry, 2006 Feb;67(3):242-54.
    PMID: 16325871
    alpha-Galactosidase (EC 3.2.1.22) from ripe papaya (Carica papaya L.) fruit was fractionated by a combination of ion exchange and gel filtration chromatography into three forms, viz., alpha-galactosidase 1, 2 and 3. The predominant isoform, alpha-gal 2, was probably a tetramer with a native molecular mass of about 170 kDa and 52 kDa-sized subunits and an estimated pI of 7.3. The subunit's N-terminal amino acid sequence shared high identity (97%) with the deduced sequence of a papaya cDNA clone encoding a putative alpha-galactosidase PAG2 as well as with an Ajuga reptans L. GGT1 clone encoding a galactan: galactan galactosyltransferase (66%). During ripening, alpha-galactosidase activity increased concomitantly with firmness loss and this increase was largely ascribed to alpha-gal 2. The protein level of alpha-gal 2 as estimated by immunoblot was low in developing fruits and generally increased with ripening. alpha-Galactosidase 2 also had the ability to markedly catalyse increased pectin solubility and depolymerisation while the polymers were still structurally attached to the cell walls mimicking, in part, the changes that occur during ripening. The close correlation between texture changes, alpha-gal 2 activity and protein levels as well as capability to modify intact cell walls suggest that the enzyme might contribute to papaya fruit softening during ripening. The purported mechanism of alpha-gal 2 action as a softening enzyme was discussed in terms of its functional capacity as a glycanase or perhaps, as a transglycosylase.
    Matched MeSH terms: Pectins/chemistry
  17. Newton AMJ, Lakshmanan P
    PMID: 30657050 DOI: 10.2174/1871523018666190118112230
    OBJECTIVE: A number of natural polymer-based drug delivery systems targeting the colon are reported for different applications. Most of the research is based on the class of natural polymers such as polysaccharides. This study compares the anti-inflammatory effect of different polysaccharide based tablets on IBD when a drug carrier is targeted to the colon as matrix and coated systems.

    METHODS: The TNBS induced IBD Wistar rats were used as a model for the study. The microscopic and macroscopic parameters were studied in detail. Almost all the important IBD parameters were reported in this work.

    RESULTS: The results demonstrated that the polysaccharides are efficient in carrying the drugs to the colon. Reduction in the level of ulcer index (UI), Myeloperoxidase (MPO), and Malondialdehyde MDA, confirmed the inhibitory activity on the development of Reactive oxygen species (ROS). The increased level of Tumor necrosis factor (TNFα) an expression of colonic inducible nitric oxide synthase (iNOS) was lowered in treatments as compared to TNBS control.

    CONCLUSION: The different polymer-based mesalamine (DPBM) confirmed the efficient anti- inflammatory activity on IBD induced rats. The increased level of glutathione (GSH), and superoxide dismutase (SOD) also confirmed the effective anti-inflammatory effect. A significant decrease in the ulcer score and ulcer area was reported. The investigation revealed that chitosan is superior to pectin in IBD treatment likewise polysaccharide-based matrix systems are superior to the coated system.

    Matched MeSH terms: Pectins/chemistry*
  18. Sabra R, Billa N, Roberts CJ
    Int J Pharm, 2019 Dec 15;572:118775.
    PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775
    In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
    Matched MeSH terms: Pectins/chemistry*
  19. Leong MH, Tan CP, Nyam KL
    J Food Sci, 2016 Oct;81(10):C2367-C2372.
    PMID: 27635525 DOI: 10.1111/1750-3841.13442
    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage.
    Matched MeSH terms: Pectins*
  20. Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF
    Int J Biol Macromol, 2017 Apr;97:131-140.
    PMID: 28064048 DOI: 10.1016/j.ijbiomac.2016.12.079
    Natural polymer-based hydrogel films have great potential for biomedical applications and are good candidates for wound dressings. In this study, we aimed to develop simvastatin-loaded crosslinked alginate-pectin hydrogel films by ionic crosslinking to improve the mechanical characteristics, wound fluid uptake and drug release behavior. Alginate-pectin hydrocolloid films were chemically crosslinked by immersing in different concentrations of CaCl2 (0.5-3% w/v) for 2-20min. The degree of crosslinking was influenced by both contact time and CaCl2 concentration. The optimized conditions for crosslinking were 0.5% and 1% (CaCl2) for 2min. The optimized hydrogel films were then characterized for their physical, mechanical, morphological, thermal, in vitro drug release, and cytocompatibility profiles. Crosslinking improved the mechanical profile and wound fluid uptake capacity of dressings. The hydrogel films were able to maintain their physical integrity during use, and the best results were obtained with the film in which the extent of crosslinking was low (0.5%). Thermal analysis confirmed that the crosslinking process enhanced the thermal stability of hydrogel films. Sustained, slow release of simvastatin was obtained from the crosslinked films and in vitro cytotoxicity assay demonstrated that the hydrogel films were non-toxic.
    Matched MeSH terms: Pectins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links