Displaying publications 61 - 80 of 260 in total

Abstract:
Sort:
  1. Chung KH, Othman Z, Lee JS
    J Food Sci Technol, 2015 Oct;52(10):6218-29.
    PMID: 26396368 DOI: 10.1007/s13197-014-1700-4
    Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physicochemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physicochemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation.
    Matched MeSH terms: Starch
  2. Nazrin A, Sapuan SM, Zuhri MYM
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992514 DOI: 10.3390/polym12102216
    In this paper, sugar palm nanocellulose fibre-reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites were prepared using melt blending and compression moulding with different TPS concentrations (20%, 30%, 40%, 60%, and 80%) and constant sugar palm nanocellulose fibres (0.5%). The physical, mechanical, thermal, and water barrier properties were investigated. The SEM images indicated different TPS loading effects with the morphology of the blend bionanocomposites due to their immiscibility. A high content of TPS led to agglomeration, while a lower content resulted in the presence of cracks and voids. The 20% TPS loading reduced the tensile strength from 49.08 to 19.45 MPa and flexural strength from 79.60 to 35.38 MPa. The thermal stability of the blend bionanocomposites was reduced as the TPS loading increased. The thickness swelling, which corresponded to the water absorption, demonstrated an increasing trend with the increased addition of TPS loading.
    Matched MeSH terms: Starch
  3. Tuan Mohamood NFA, Zainuddin N, Ahmad Ayob M, Tan SW
    Chem Cent J, 2018 Dec 06;12(1):133.
    PMID: 30523481 DOI: 10.1186/s13065-018-0500-8
    In this study, sago starch was modified in order to enhance its physicochemical properties. Carboxymethylation was used to introduce a carboxymethyl group into a starch compound. The carboxymethyl sago starch (CMSS) was used to prepare smart hydrogel by adding acetic acid into the CMSS powder as the crosslinking agent. The degree of substitution of the CMSS obtained was 0.6410. The optimization was based on the gel content and degree of swelling of the hydrogel. In this research, four parameters were studied in order to optimize the formation of CMSS-acid hydrogel. The parameters were; CMSS concentration, acetic acid concentration, reaction time and reaction temperature. From the data analyzed, 76.69% of optimum gel content was obtained with 33.77 g/g of degree of swelling. Other than that, the swelling properties of CMSS-acid hydrogel in different media such as salt solution, different pH of phosphate buffer saline solution as well as acidic and alkaline solution were also investigated. The results showed that the CMSS-acid hydrogel swelled in both alkaline and salt solution, while in acidic or low pH solution, it tended to shrink and deswell. The production of the hydrogel as a smart material offers a lot of auspicious benefits in the future especially related to swelling behaviour and properties of the hydrogel in different types of media.
    Matched MeSH terms: Starch
  4. Ayu RS, Khalina A, Harmaen AS, Zaman K, Mohd Nurrazi N, Isma T, et al.
    Sci Rep, 2020 01 24;10(1):1166.
    PMID: 31980742 DOI: 10.1038/s41598-020-58278-y
    In this study, it focused on empty fruit brunch (EFB) fibres reinforcement in polybutylene succinate (PBS) with modified tapioca starch by using hot press technique for the use of agricultural mulch film. Mechanical, morphological and thermal properties were studied. Mechanical analysis showed decreased in values of modulus strength for both tensile and flexural testing for fibres insertion. Higher EFB fibre contents in films resulted lower mechanical properties due to poor fibre wetting from insufficient matrix. This has also found evident in SEM micrograph, showing poor interfacial bonding. Water vapour permeability (WVP) shows as higher hydrophilic EFB fibre reinforcement contents, the rate of WVP also increase. Besides this, little or no significant changes on thermal properties for composite films. This is because high thermal stability PBS polymer show its superior thermal properties dominantly. Even though EFB fibres insertion into PBS/tapioca starch biocomposite films have found lower mechanical properties. It successfully reduced the cost of mulch film production without significant changes of thermal performances.
    Matched MeSH terms: Starch
  5. Halim SA, Razali N, Mohd N
    Data Brief, 2020 Dec;33:106535.
    PMID: 34026955 DOI: 10.1016/j.dib.2020.106535
    Pellet mixed with 5 wt% and 10 wt% of binders was tested. The pelleting process was performed using a pellet mill operated at 100 °C and at 50 MPa. The physical and chemical characteristics including hardness, high heating value and proximate analysis of pellet produces were obtained using durometer and through thermographic analysis and the results were reported in this paper. Bulk and unit density were determined according to ASABE standard. The dataset presented here are the data of palm kernel shell pellet prepared using two types of binder; (1) sago starch and (2) sodium acetate. The pelletization of palm kernel shell aimed to increase the density and strength of the palm kernel shell pellet and consequently provide better thermal degradation characteristics.
    Matched MeSH terms: Starch
  6. Ramli S, Ismail N, Alkarkhi AF, Easa AM
    Trop Life Sci Res, 2010 Aug;21(1):91-100.
    PMID: 24575193 MyJurnal
    Banana peel flour (BPF) prepared from green or ripe Cavendish and Dream banana fruits were assessed for their total starch (TS), digestible starch (DS), resistant starch (RS), total dietary fibre (TDF), soluble dietary fibre (SDF) and insoluble dietary fibre (IDF). Principal component analysis (PCA) identified that only 1 component was responsible for 93.74% of the total variance in the starch and dietary fibre components that differentiated ripe and green banana flours. Cluster analysis (CA) applied to similar data obtained two statistically significant clusters (green and ripe bananas) to indicate difference in behaviours according to the stages of ripeness based on starch and dietary fibre components. We concluded that the starch and dietary fibre components could be used to discriminate between flours prepared from peels obtained from fruits of different ripeness. The results were also suggestive of the potential of green and ripe BPF as functional ingredients in food.
    Matched MeSH terms: Starch
  7. Habilla, C., Sim, S.Y., Nor Aziah, Cheng, L.H.
    MyJurnal
    In this study, acid-thinned starch was blended with konjac glucomannan or psyllium husk powder at a concentration of 3% w/w (starch basis). The blends were characterized by pasting analysis and rheological
    properties evaluation. Jelly candy was made from the blends and textural characteristics were studied. Pasting analysis showed that both gums were found to significantly increase some of the pasting parameters, such as peak viscosity, trough, breakdown, final viscosity and setback values. From the frequency sweep, it was found that addition of konjac glucomanan or psyllium husk powder increased the storage modulus (G’) and loss modulus (G’’) values, with psyllium added sample showing more prominent effect than konjac added ones, when compared to the control samples. All samples were found to demonstrate thixotropic flow behaviour. Jelly candy texture profile analysis revealed that konjac glucomannan or psyllium husk powder addition, although decreasing chewability, but rendered the jelly candy less sticky.
    Matched MeSH terms: Starch
  8. Talib, R.A., Nor, M.Z.M., Noranizan, M.A., Chin, N.L., Hashim, K.
    MyJurnal
    This work describes the effects of different cooking temperatures in repetitive cooking-chilling (RCC) process on resistant starch (RS) content in fish crackers prepared in a ratio of 1:1 fish to sago starch formulation. In this work, three sets of four RCC cycles were performed on fish crackers, in which each set was cooked at fixed temperatures of 100, 115 and 121°C, respectively. The chilling temperature was fixed at 4°C in all cases. Subjecting the fish crackers to a higher cooking temperature for up to 4 cycles of RCC can increase the RS content. However, quality degradation was observed in the characteristics of the fish crackers. During the first RCC cycle, cooking at a higher temperature had caused the crackers to crack and burst. Besides, defragmentation to the shape of the fish cracker gels was also observed during the first RCC cycle, coupled with softer texture and high moisture content. When the products were subjected to frying, their linear expansion decreased, the texture became harder and the colour turned darker. This work demonstrated that the application of higher cooking temperature up to 4 RCC cycles was able to enhance the RS content in the fish crackers, but it was less able to attain the product's perfect shape. On the contrary, fish crackers that were exposed to lower cooking temperatures contained lower RS but with less shape damage.
    Matched MeSH terms: Starch
  9. Khadijah, O., Lee, K.K., Abdullah, M.F.F.
    ASM Science Journal, 2010;4(2):103-112.
    MyJurnal
    Two sequential statistical experimental designs were used to screen and investigate the dependence of the amount of biodegradation of Procion Red MX-8B (PR-MX8B) on the fermentation variables. Fourteen factors were screened using the Plackett-Burman design. Among these factors, the most significant variables which included yeast extract, corn steep solids and starch influencing PR-MX8B decolourisation were statistically elucidated for optimization. The optimum concentrations of 5.00 g/l yeast extract, 2.99 g/l starch and 1.89 g/l corn steep solids were predicted by applying the Box-Behnken design to the second order polynomial model fitted to the results obtained. The best predicted optimal conditions verified experimentally yielded 72.11% while the predicted value from the polynomial model was 79.17%. The experimental values were in good agreement with the predicted values with a 90.81% degree of accuracy.
    Matched MeSH terms: Starch
  10. Mohamad SNH, Muhamad II, Mohd Jusoh YM, Khairuddin N
    J Food Sci Technol, 2018 Dec;55(12):5161-5165.
    PMID: 30483013 DOI: 10.1007/s13197-018-3327-3
    Dielectric properties study is important in understanding the interaction between materials within electromagnetic field. By knowing and understanding the dielectric properties of materials, an efficient and effective microwave heating process and products can be designed. In this study, the dielectric properties of several encapsulation wall materials were measured using open-ended coaxial probe method. This method was selected due to its simplicity and high accuracy. All materials exhibited similar behavior. The result inferred that β-cyclodextrin (BC), starch (S), Arabic (GA) and maltodextrin (M) with various dextrose equivalent exhibited effective encapsulation wall materials in microwave encapsulation-drying technique owing to loss tangent values which were higher than 0.1 at general application frequency of 2.45 GHz. Thus, these were found to be suitable as wall material to encapsulate the selected core material in this microwave encapsulation-drying method. On contrary, sodium caseinate showed an ineffective wall material to be used in microwave encapsulation-drying. The differences in the values of dielectric constant, loss factor and loss tangent were found to be contributed by frequency, composition and bulk density.
    Matched MeSH terms: Starch
  11. Kanmani N, Romano N, Ebrahimi M, Nurul Amin SM, Kamarudin MS, Karami A, et al.
    Food Chem, 2018 Jan 15;239:1037-1046.
    PMID: 28873520 DOI: 10.1016/j.foodchem.2017.07.061
    A 9-week study was conducted to compare dietary corn starch (CS) or tapioca starch (TS), with or without being pre-gelatinized (PG), on the growth, feeding efficiencies, plasma and muscle biochemistry, intestinal short chain fatty acids (SCFA), and liver glycogen of triplicate groups of 20 red hybrid tilapia (Orecohromis sp.). Various pellet characteristics were evaluated, along with their surface and cross sectional microstructure. The PG diets had significantly higher water stability, bulk density, and protein solubility, along with a smoother surface. Tilapia fed the TS diet had lower growth than had all other tilapia, but were significantly improved when diet was pre-gelatinized. In the PG treatments, intestinal SCFA significantly decreased while plasma glucose, cholesterol and triglycerides, as well as liver glycogen, significantly increased. Fish fed the CS diet had significantly more long chain polyunsaturated fatty acid than had those fed by other treatments. Pre-gelatinization may improve fish productivity and offer greater flexibility during aquafeed production.
    Matched MeSH terms: Starch
  12. Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, et al.
    Chemosphere, 2023 Apr;321:138000.
    PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000
    In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
    Matched MeSH terms: Starch
  13. Idris SN, Amelia TSM, Bhubalan K, Lazim AMM, Zakwan NAMA, Jamaluddin MI, et al.
    Environ Res, 2023 Aug 15;231(Pt 1):115988.
    PMID: 37105296 DOI: 10.1016/j.envres.2023.115988
    Plastics have become an integral part of human life. Single-use plastics (SUPs) are disposable plastics designed to be used once then promptly discarded or recycled. This SUPs range from packaging and takeaway containers to disposable razors and hotel toiletries. Synthetic plastics, which are made of non-renewable petroleum and natural gas resources, require decades to perpetually disintegrate in nature thus contribute to plastic pollution worldwide, especially in marine environments. In response to these problems, bioplastics or bio-based and biodegradable polymers from renewable sources has been considered as an alternative. Understanding the mechanisms behind the degradation of conventional SUPs and biodegradability of their greener counterpart, bioplastics, is crucial for appropriate material selection in the future. This review aims to provide insights into the degradation or disintegration of conventional single-use plastics and the biodegradability of the different types of greener-counterparts, bioplastics, their mechanisms, and conditions. This review highlights on the biodegradation in the environments including composting systems. Here, the various types of alternative biodegradable polymers, such as bacterially biosynthesised bioplastics, natural fibre-reinforced plastics, starch-, cellulose-, lignin-, and soy-based polymers were explored. Review of past literature revealed that although bioplastics are relatively eco-friendly, their natural compositions and properties are inconsistent. Furthermore, the global plastic market for biodegradable plastics remains relatively small and require further research and commercialization efforts, especially considering the urgency of plastic and microplastic pollution as currently critical global issue. Biodegradable plastics have potential to replace conventional plastics as they show biodegradation ability under real environments, and thus intensive research on the various biodegradable plastics is needed to inform stakeholders and policy makers on the appropriate response to the gradually emerging biodegradable plastics.
    Matched MeSH terms: Starch
  14. Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, et al.
    J Biosci Bioeng, 2016 Jun;121(6):692-696.
    PMID: 26702953 DOI: 10.1016/j.jbiosc.2015.11.001
    Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
    Matched MeSH terms: Starch/metabolism; Starch/chemistry
  15. Irani M, Ismail H, Ahmad Z, Fan M
    J Environ Sci (China), 2015 Jan 1;27:9-20.
    PMID: 25597658 DOI: 10.1016/j.jes.2014.05.049
    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.
    Matched MeSH terms: Starch/analogs & derivatives*; Starch/chemistry
  16. Lee JS, Ee ML, Chung KH, Othman Z
    Carbohydr Polym, 2013 Sep 12;97(2):614-7.
    PMID: 23911492 DOI: 10.1016/j.carbpol.2013.05.047
    The effect of gamma-irradiation on formation of resistant starch (RS) in corn starch with different amylose content was examined. Normal corn starch, waxy corn starch, and high amylose corn starch (Hylon V and Hylon VII) were irradiated at 5, 10, 25 and 50 kGy. Gamma-irradiation at 5 kGy increased the amylose-like molecules in starches and thus significantly enhanced the RS content (p<0.05). Highest RS content was produced by 50 kGy irradiated in all the starch samples (p<0.05). The irradiation-induced RS was more evident in waxy corn starch, followed by high amylose corn starch and normal corn starch.
    Matched MeSH terms: Starch/chemical synthesis*; Starch/radiation effects*
  17. Mar NN, Umemoto T, Ismail M, Abdullah SN, Maziah M
    J Sci Food Agric, 2013 Jan 15;93(1):110-7.
    PMID: 22821180 DOI: 10.1002/jsfa.5737
    Characterization of starch properties and functionality can apply breeding program selection for desirable traits such as eating, cooking and processing qualities to meet consumer preference. Low amylose content is generally preferred in Malaysia because of cohesive, tender and glossy cooked rice. Rice high in short-chain amylopectin has a lower transition temperature of starch gelatinization. In the continuing search for improved starch quality in rice cultivars a study was carried out with new mutant lines MR219-4 and MR219-9, derived from MR219.
    Matched MeSH terms: Starch/genetics*; Starch/chemistry
  18. Uthumporn U, Shariffa YN, Karim AA
    Appl Biochem Biotechnol, 2012 Mar;166(5):1167-82.
    PMID: 22203397 DOI: 10.1007/s12010-011-9502-x
    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.
    Matched MeSH terms: Starch/metabolism*; Starch/chemistry*
  19. Bin LK, Helaluddin ABM, Islam Sarker MZ, Mandal UK, Gaurav A
    Pak J Pharm Sci, 2020 Mar;33(2):551-559.
    PMID: 32276897
    Orally disintegrating tablet (ODT) is a friendly dosage form that requires no access to water and serves as a solution to non-compliance. There are many co-processed adjuvants available in the market. However, there is no single product possesses all the ideal characteristics such as good compressibility, fast disintegration and good palatability for ODT application. The aim of this research was to produce a xylitol-starch base co-processed adjuvant which is suitable for ODT application. Two processing methods namely wet granulation and freeze drying were used to compare the characteristics of co-processed adjuvant comprising of xylitol, starch and crospovidone XL-10 mixed at various ratios. The co-processed excipients were compressed into ODT and physically characterized for powder flow, particle size, hardness, thickness, weight, friability, in-vitro disintegration time and in-situ disintegration time, lubricant sensitivity, dilution potential, Fourier transform infrared spectroscopy, scanning electronic microscopy and x-ray diffraction analysis. Formulation F6 was selected as the optimum formulation due to the fastest in-vitro (135.33±11.52 s) and in-situ disintegration time (88.67±13.56s) among all the formulations (p<0.05). Increase in starch component decreases disintegration time of ODT. The powder flow fell under the category of fair flow. Generally, it was observed that freeze drying method produced smaller particle size granules compared to wet granulation method. ODT produced from freeze drying method had shorter disintegration time compared to ODT from wet granulation batch. In conclusion, a novel co-processed excipient comprised of xylitol, starch and crospovidone XL-10, produced using freeze drying method with fast disintegration time, good compressibility and palatability was developed and characterized. The co-processed excipient is suitable for ODT application.
    Matched MeSH terms: Starch/administration & dosage; Starch/chemical synthesis*
  20. Fasahat P, Rahman S, Ratnam W
    J Genet, 2014 Apr;93(1):279-92.
    PMID: 24840849
    Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world's most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.
    Matched MeSH terms: Starch/metabolism; Starch/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links